Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1922 results about "Trisodium citrate" patented technology

Trisodium citrate has the chemical formula of Na₃C₆H₅O₇. It is sometimes referred to simply as "sodium citrate", though sodium citrate can refer to any of the three sodium salts of citric acid. It possesses a saline, mildly tart flavor. It is mildly basic and can be used along with citric acid to make biologically compatible buffers.

Methods and kits for locking and disinfecting implanted catheters

InactiveUS6679870B1Reduce riskInhibiting fouling and plugging of the lumenMedical devicesCatheterPropanolTrisodium citrate
Implanted catheters are locked with a solution comprising a lower alcohol, typically ethanol, propanol, or butanol, most preferably isopropanol, and an additive, the additive comprising an anti-microbial, typically taurolidine or triclosan, or an anti-coagulant, typically riboflavin, sodium citrate, ethylene diamine tetraacetic acid, or citric acid. The use of an alcohol and additive solution can effectively reduce fouling of the catheter, particularly clotting and thrombus in intravascular catheters, as well as reduce the risk of infection. The risk of infection can be further reduced by employing a catheter body which is sufficiently porous to permit the anti-microbial solution of a lower alcohol and another anti-microbial or anti-coagulant compound to penetrate into the catheter body and preferably through the catheter into tissue surrounding the implanted catheter.
Owner:EXCELSIOR MEDICAL

Preparation method of triangular silver nanosheet

The invention relates to a preparation method of a triangular silver nanosheet, which comprises the following steps: firstly, mixing three types of reagents of oxyacid silver, trisodium citrate (Na3C6H5O7.2H2O) and polyvinyl pyrrolidone (PVP) according to a certain molar ratio; stirring for 4-10min at the temperature of 0 DEG C-30 DEG C; adding a proper amount of sodium borohydride (NaBH4) reagent into the mixed system; and then, adding a proper amount of hydrogen peroxide the mass fraction of which is 10%-30% to finally obtain the triangular silver nanosheet the size of which is 50nm-120nm. The method for preparing the triangular silver nanosheet has simple operation and high success ratio and can be carried out at normal temperature.
Owner:南通丝乡丝绸有限公司 +1

Method for preparing antibacterial composite material with nano silver particles evenly dispersed in polymeric matrix

The invention discloses a method for preparing an antibacterial composite material with nano-silver particles evenly dispersed in a polymeric matrix, which belongs to technique for preparing antibacterial nano composite materials and comprises the following steps: preparing styrene / methyl methacrylate hybrid monomers, a sodium dodecyl sulfate hybrid monomer solution, a silver nitrate aqueous solution and a trisodium citrate aqueous solution; mixing the silver nitrate aqueous solution and the trisodium citrate aqueous solution with the sodium dodecyl sulfate hybrid monomer solution according to a volume ratio to obtain a micro-emulsion containing silver nitrate and a micro-emulsion containing trisodium citrate; stirring and mixing the two micro-emulsions to obtain a stable micro-emulsion having hybrid monomers of continuous phases and containing the nano-silver particles; and then dispersing the emulsions in distilled water to prepare a common emulsion, introducing nitrogen for deoxidization, adding an initiator to perform emulsion polymerization reaction, using sodium chloride to perform emulsion-breaking and separation on the product, fully washing the product with deionized water, and soaking the product in ethanol, and drying the product to constant weight so as to obtain the antimicrobial nano-silver / poly(styrene-methyl methacrylate) composite material. The method has simple preparation processes and can make the nano-silver particles evenly dispersed in the polymer matrix, and the prepared composite material has broad-spectrum bactericidal property, and has high fatality rate to Escherichia coli, bacillus subtilis, staphylococcus aureus and pseudomonas aeruginosa in 24 hours.
Owner:HEBEI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Water-base oil dirt cleaning agent and preparation method thereof

The invention discloses a water-base oil dirt cleaning agent and a preparation method thereof, wherein the water-base oil dirt cleaning agent has the characteristics of being strong in cleaning capability, excellent in biodegradation, low in preparation cost, environmentally-friendly, efficient and the like, and is specifically suitable for cleaning heavy oil dirt on the road pavement. The water-base oil dirt cleaning agent consists of the following components in weight proportion: 2-7% of anionic surfactant, 2-8% of nonionic surfactant, 1.5-3% of triethanolamine, 1-3% of trisodium citrate and the balance of water, wherein the anionic surfactant is preferably selected from two or three of alpha-vinyl sodium sulfonate (AOS), sodium dodecyl benzene sulfonate (LAS) and sulfonate of fatty acid methyl ester ethoxylate (FMES); and the nonionic surfactant is preferably selected from one or two of fatty alcohol-polyoxyethylene ether (AEO-9) and cocamidopropyl betaine (CAB).
Owner:长沙市城洁宝环境工程有限公司

Functional graphene oxide loaded nano-silver antibacterial material as well as preparation method and application thereof

The invention belongs to the technical field of nano-silver antibacterial materials and discloses an aminated polyethylene glycol functional graphene oxide loaded nano-silver antibacterial material, a preparation method of the antibacterial material and an application of the antibacterial material in the fields of bacteriostasis and sterilization. The method comprises the following steps: adding aminated polyethylene glycol into an aqueous solution of graphene oxide, adding 1-ethyl-(3-dimethylaminopropyl) carbonyldiimine hydrochloride and N-hydroxy succinimide, regulating the pH value, stirring, and reacting, thereby obtaining the aminated polyethylene glycol modified graphene oxide; preparing the aqueous solution of the graphene oxide, adding silver nitrate, heating until the solution is boiled after dissolving, adding sodium citrate or NaBH4 aqueous solution, reacting, and cooling, thereby obtaining the aminated polyethylene glycol functional graphene oxide loaded nano-silver antibacterial material. The antibacterial material prepared by the invention has good water solubility and stability, the loading efficiency and antibacterial activity are obviously improved, and the antibacterial material has obvious antibacterial activity and can be widely applied to the fields of bacteriostasis and sterilization.
Owner:JINAN UNIVERSITY

Superparamagnetic Nanoparticles Based on Iron Oxides with Modified Surface, Method of Their Preparation and Application

The subject of the invention is superparamagnetic nanoparticle probes based on iron oxides, to advantage magnetite or maghemite, with modified surface, coated with mono-, di- or polysaccharides from the group including D-arabinose, D-glucose, D-galactose, D-mannose, lactose, maltose, dextrans and dextrins, or with amino acids or poly(amino acid)s from the group including alanine, glycine, glutamine, asparagine, histidine, arginine, L-lysine, aspartic and glutamic acid or with synthetic polymers based on (meth)acrylic acid and their derivatives selected from the group containing poly(N,N-dimethylacrylamide), poly(N,N-dimethylmethacrylamide), poly(N,N-diethylacrylamide), poly(N,N-diethylmethacrylamide), poly(N-isopropylacrylamide), poly(N-isopropylmethacrylamide), which form a colloid consisting of particles with narrow distribution with polydispersity index smaller than 1.3, the average size of which amounts to 0.5-30 nm, to advantage 1-10 nm, the iron content is 70-99.9 wt. %, to advantage 90 wt. %, the modification agent content 0.1-30 wt. %, to advantage 10 wt. %.
The particles of size smaller than 2 nm with polydispersity index smaller than 1.1 can be obtained by a modified method of preparation.
Superparamagnetic nanoparticle probes according to the invention are prepared by pre-precipitation of colloidal Fe(OH)3 by the treatment of aqueous 0.1-0.2M solution of Fe(III) salt, to advantage FeCl3, with less than an equimolar amount of NH4OH, at 21° C., under sonication, to which a solution of a Fe(II) salt, to advantage FeCl2, is added in the mole ratio Fe(III)/Fe(II)=2 under sonication and the mixture is poured into five- to tenfold, to advantage eightfold, molar excess of 0.5M NH4OH. The mixture is left aging for 0-30 min, to advantage 15 min, and then the precipitate is repeatedly, to advantage 7-10 times, magnetically separated and washed with deionized water. Then 1-3 fold amount, to advantage 1.5 fold amount, relative to the amount of magnetite, of 0.1 M aqueous solution of sodium citrate is added and then, dropwise, 1-3 fold amount, to advantage 1.5 fold amount, relative to the amount of magnetite, of 0.7 M aqueous solution of sodium hypochlorite. The precipitate is repeatedly, to advantage 7-10 times, washed with deionized water under the formation of colloidal maghemite to which, after dilution, is added dropwise, to advantage under 5-min sonication, an aqueous solution of a modification agent, in the weight ratio modification agent/iron oxide=0.1-10, to advantage 0.2 for amino acids and poly(amino acid)s and 5 for saccharides.
The particles smaller than 2 nm with polydispersity index smaller than 1.1 are prepared by mixing at 21° C. 1 volume part of 10-60 wt. %, to advantage 50 wt. %, of an aqueous solution of a saccharide, disaccharide or polysaccharide, such as D-arabinose, D-glucose, D-galactose, D-mannose, lactose, maltose, dextran and dextrins, and 1 volume part of aqueous solution of a Fe(II) and Fe(III) salt, to advantage FeCl2 and FeCl3, where the molar ratio Fe(III)/Fe(II)=2. A 5-15%, to advantage 7.5%, solution of NH4OH is added until pH 12 is attained and the mixture is heated at 60° C. for 15 min. The mixture is then sonicated at 350 W for 5 min and then washed for 24 h by dialysis in water using a membrane with molecular weight cut-off 14,000 until pH 7 is reached. The volume of solution is reduced by evaporation so that the final dry matter content is 50-100 mg/ml, to advantage 80 mg per 1 ml.
Superparamagnetic nanoparticle probes according to the invention can be used for labelling cells used in magnetic resonance imaging for monitoring their movement, localization, survival and differentiation especially in detection of pathologies with cell dysfunction and of tissue regeneration and also for labelling and monitoring cells administered for cell therapy purposes, in particular embryonal stem cells, fetal stem cells, stem cells of an adult human including bone marrow stem cells, olfactory glial cells, fat tissue cells, in the recipient organism by magnetic resonance.
The preparation of labelled cells proceeds by adding to the complete culture medium 5-20 μl, to advantage 10 μl, of a colloid containing 0.05-45 mg iron oxide per ml, to advantage 1-5 mg iron oxide per ml of the medium, and culturing the cells for a period of 1-7 days, to advantage for 1-3 days, at 37° C. and 5% of CO2.
Owner:INST OF MACROMOLECULAR CHEM ASCR V V I +1

Methods and kits for locking and disinfecting implanted catheters

InactiveUS20020010438A1Reduce riskInhibiting fouling and plugging of the lumenDialysis systemsMedical devicesTriclosanThrombus
Implanted catheters are locked with a solution comprising a lower alcohol, typically ethanol, propanol, or butanol, in a range from 1% to 99% by volume, and an additive in a range from 1% to 99% by volume, the additive comprising an anti-microbial, typically taurolidine or triclosan, or an anti-coagulant, typically riboflavin, sodium citrate, ethylene diamine tetraacetic acid, or citric acid. The use of an alcohol and additive solution can effectively reduce fouling of the catheter, particularly clotting and thrombus in intravascular catheters, as well as eradicate existing infections and / or reduce the risk of potential infections. Existing infections and / or potential infections can be further reduced by employing a catheter body which permits an anti-microbial solution to penetrate into the catheter body and preferably through the catheter into tissue surrounding the implanted catheter.
Owner:EXCELSIOR MEDICAL

Method for preparing functional gold nanoparticles with high stability

The invention discloses a method for preparing functional gold nanoparticles with high stability, which belongs to the technical field of material chemistry. The method comprises the following steps of: the DNA-assisted synthesis of the gold nanoparticles, the salt tolerance experiment of the synthesized gold nanoparticles, the representation of the synthesized gold nanoparticles and the biometric identification of the DNA on the surfaces of the gold nanoparticles. In the method, four kinds of DNAs with three different lengths are utilized and a chloroauric acid is reduced by trisodium citrate to realize the assisted synthesis of the gold nanoparticles; the DNAs of 12 basic groups are obtained by performing representation with an electron microscope to assist in synthesizing the uniform spherical gold nanoparticles, and particularly, the gold nanoparticles obtained by the 12-G-assisted synthesis have regular shapes and a uniform particle size; the salt-tolerant effect of the gold nanoparticles obtained by the salt tolerance experiment of the synthesized gold nanoparticles can be bettered by 20 times; and the gold nanoparticles can enhance the fluorescence of FAM-DNA, and are expected to be well applied to the preparation of nanometer medicaments and nanodevices.
Owner:JIANGNAN UNIV

Selenium-enriched microorganism preparation prepared from fermentation of mixed bacterium liquid and preparation method of selenium-enriched microorganism preparation

The invention discloses a selenium-enriched microorganism preparation prepared from fermentation of a mixed bacterium liquid. The selenium-enriched microorganism preparation consists of the following raw materials: sodium selenite, complex trace elements, monopotassium phosphate, urine, peptone powder, NaCl, NaOH, NaNO3, NaCl, NH4Cl, K2HPO4, a beef extract, glucose, starch, calcium carbonate, amino acid, potassium nitride, ferrous sulfate, magnesium sulfate, trisodium citrate, a biochemical enzyme and a mixed bacterium liquid; and the mixed bacterium liquid is a mixed liquid of the bacterium liquid of bacillus amyloliquefaciens, the bacterium liquid of bacillus subtilis, the bacterium liquid of bacillus licheniformis, the bacterium liquid of bacillus thuringiensis and the bacterium liquid of bacillus mucilaginosus. The mixed bacterium liquid applicable to the selenium-enriched microorganism preparation disclosed by the invention is conducive to microorganisms in soil, and can be used for increasing the quantity of the microorganisms in the soil and enhancing the activity of the microorganisms in the soil. Due to vital activity and metabolite, the strain is an agricultural product which can cause special fertilizer effect, growth regulating effect, effect of prevention and control of plant diseases and pests, soil bioremediation and the like to crops.
Owner:SHANDONG UNIV

Reticular nano hole zinc oxide micron hollow ball and preparation method thereof

The invention discloses a reticulate nanopore zinc-oxide micron hollow sphere and a preparation method thereof. The hollow sphere of the invention comprises the following materials: the surface of the zinc-oxide micron hollow sphere is provided with reticulate nanopore, wherein, the diameter of the hollow sphere is 1 to 10mum and the aperture of the nanopore is 50 to 100nm; the method of the invention comprises a liquid-phase chemical method, particularly (a) according to the mole ratio that zinc salt: chelating agent: sodium citrate: water is equal to 1:(0.5-1.5):(0.05-0.15):(50-150), the materials are weighted, then put into a vessel, stirred, dissolved and kept warm for three hours at the temperature of 70 to 100 DEG C under the sealing state to obtain a product; (b) the obtained product is filtrated, washed more than one time and heated for 1 to 3 hours at the temperature of 300 to 500 temperature, and the reticulate nanopore zinc-oxide micron hollow sphere is obtained; the zinc salt is zinc nitrate or zinc acetate or zinc chloride or zinc sulfate, and the chelating agent is urea or ammonia or hexamethylene tetramine or ammonium hydroxide. The hollow sphere can be widely applied to the fields of drug transportation, chemical reaction carrier, cosmetics, coating material, catalytic and photocatalysis material, etc.
Owner:HEFEI INSTITUTES OF PHYSICAL SCIENCE - CHINESE ACAD OF SCI

Sea urchin-shaped hollow gold and silver alloy nano particle and preparation method and application thereof

The invention discloses a sea urchin-shaped hollow gold and silver alloy nano particle and a preparation method and application thereof. The method comprises the following steps: dissolving silver nitrate into water; heating the mixture of the silver nitrate and the water till boiling; adding trisodium citrate aqueous solution in the mixture and keeping boiling for 3-30 minutes to obtain a silver colloid; mixing chloroauric acid aqueous solution and the water; adding the silver colloid under the condition of agitation at the temperature of 15 DEG C; adding hemoporphyrin metalporphyrin aqueous solution and obtaining a reaction solution after 5 min reaction; performing centrifugalization of the reaction solution, washing deposit obtained via centrifugalization, and obtaining the sea urchin-shaped hollow gold and silver alloy nano particle. The diameter of the nano particle is 80 nm-300 nm, the hollow size is 20 nm-50 nm, the length of a stab is 10 nm-30 nm, the diameter of the stab is 10 nm. The preparation method is simple, low in cost, gentle in condition, short in time, easy in process control, and large in production capacity. The obtained nano particle can be well applied to organic molecule detection, earlier detection of tumour and photothermal treatment.
Owner:XI AN JIAOTONG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products