Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

871 results about "Cobalt alloy" patented technology

Cobalt alloys are naturally ferromagnetic. The crystallographic nature of cobalt alloys allow them to maintain their strength, even at higher temperatures and feature improved wear resistance and corrosion resistance than other metals.

Black surface treatment process of electrolytic copper foil

The invention relates to a black surface treatment process of an electrolytic copper foil, belonging to the technical field of production processes of high and precision electrolytic copper foils. The black surface treatment process of an electrolytic copper foil is characterized in that a VLP (Very Low Profile) electrolytic copper foil of 8-12 mu m is used as an electrode, and then copper or copper alloy is roughened, solidified, weakly roughened and electrically deposited at a running speed of 25.0+/-0.1m/min; a layer of nano-scale nickel or cobalt alloy and a layer of nano-scale zinc alloy are sequentially and electrically deposited; and then alkaline chromate passivation is carried out and a layer of coupling agent is coated. In the invention, the black copper foil for an FPC (Flexible Printing Circuit) is obtained by carrying out a series of special surface treatments on the ultrathin and VLP electrolytic copper foil of 8-12 mu m, wherein the surface roughness Ra of the obtained copper foil is smaller than or equal to 0.30 mu m, Rz is smaller than or equal to 2.5 mu m; the thickness of the copper foil subjected to the surface treatments is increased by 1.40-1.80 mu m; the copper foil does not contain elements having serious damages to the human body, such as lead, mercury, cadmium, stibium, and the like and has excellent oxidation resistance as well as corrosion and etching resistance; the peel strength of the copper foil on a PI (Polyimide) film reaches higher than 1.0N/mm, and the folding strength on the PI film reach more than 100 thousand numbers of times; the copper foil has good appearance characteristics after the copper foil is microetched, and after the copper foil is made into an FCCL (Flexible Copper Clad Laminate), the copper foil has similar appearance characteristics to a rolled copper foil; and the properties of the copper foil product are equivalent to that of an electrolytic copper foil with the same specification for the FCCL.
Owner:SHANDONG JINBAO ELECTRONICS

Metal and Dielectric Compatible Sacrificial Anti-Reflective Coating Cleaning and Removal Composition

A liquid removal composition and process for removing sacrificial anti-reflective coating (SARC) material from a substrate having same thereon. The liquid removal composition includes at least one fluoride-containing compound, at least one organic solvent, optionally water, and optionally at least one chelating agent. The composition achieves at least partial removal of SARC material in the manufacture of integrated circuitry with minimal etching of metal species on the substrate, such as aluminum, copper and cobalt alloys, and without damage to low-k dielectric materials employed in the semiconductor architecture.
Owner:ENTEGRIS INC

Exchange coupling dual-phase nano composite permanent magnet particles and preparation method thereof

The invention discloses exchange coupling dual-phase nano composite NdFeB permanent magnet particles and a preparation method thereof. The nano composite rare-earth permanent magnet particles are formed by uniformly distributing soft magnetic nano particles on the surface of hard magnetic particles, wherein the soft magnetic nano particles are iron, cobalt or iron cobalt alloy nano particles and account for 3-20 percent by weight of the nano composite rare-earth permanent magnet particles, and the hard magnetic particles are NdFeB magnetic powder. In the invention, the nano composite permanent magnet powder is prepared by wrapping the iron, cobalt or iron cobalt alloy nano particles on the surfaces of the single-phase hard magnet particles NdFeB by using a coprecipitation method or microwave-assisted polyalcohol reduction method. The preparation method of the invention has simple process and relatively lower cost and is suitable for mass production, the permanent magnet powder obtained by the method disclosed in the invention can be prepared into high-performance nano composite permanent magnets after being sintered, bonded or densified subsequently; in addition, the invention canremarkably reduce the rare-earth content in a permanent magnet material, decrease the production cost and improve the magnetic performance of the prepared product.
Owner:SOUTH CHINA UNIV OF TECH

Method for preparing carbon-wrapped iron-cobalt nano wave-absorbing material

The invention provides a method for preparing a carbon-wrapped iron-cobalt nano composite material with broad band and strong absorption. The composite material is prepared by adopting the technology that plasmas is generated by arc discharge of a negative electrode and a positive electrode under working gas, wherein the working gas is argon gas, simultaneously organic substances which can provide carbon elements and do not introduce impurities except C, H and O are added, the negative electrode is made of metals with high melting point and volatile difficulty such as tungsten and the like, and a target material for the positive electrode is iron-cobalt alloy, wherein the iron element accounts for 10 to 90 percent of alloy atomic. The carbon-wrapped iron-cobalt nano wave-absorbing material prepared by the method is a nano capsule formed by wrapping carbon outside the nano-scale iron-cobalt alloy; on one hand, a carbon shell layer is used as an oxidation resistant layer to increase the stability of a nano compound; and on the other hand, the carbon shell layer is used as a dielectric material and compounded with a magnetic iron-cobalt inner core so that the wave-absorbing property of the wave-absorbing material is superior to most classical ferrite and other most nano compound wave-absorbing materials.
Owner:INST OF METAL RESEARCH - CHINESE ACAD OF SCI

Super-hard abrasive grinding wheel with head face having abrasives in phyllotaxis arrangement and production method thereof

InactiveCN102198641AReduce wearAchieving landform controllabilityBonded abrasive wheelsGrinding devicesWheel wearControllability
The invention discloses a super-hard abrasive grinding wheel with a head face having abrasives in a phyllotaxis arrangement, comprising a grinding wheel basal body. The working surface of the grinding wheel basal body is provided with a plurality of abrasive particles or abrasive particle groups fitting with the biological phyllotaxis theory. The plurality of abrasive particles or abrasive particle groups are fixed on the grinding wheel basal body through a metal bonding agent. According to the biological phyllotaxis theory, the plurality of abrasive particles or abrasive particle groups forma plurality of anticlockwise leaf column line grooves and a plurality of clockwise leaf column line grooves. By means of the invention, the arrangement of the abrasive particles or the abrasive particle groups on the working surface of the grinding wheel fits with the H.Vogel model of the phyllotaxis theory so as to realize the physiographic controllability of the working surface of the grinding wheel. Nickel or nickel-cobalt alloy is adopted to serve as the bonding agent so as to fixedly bond the abrasives. The grinding wheel is capable of controlling the cutting state of the abrasive particles in a grinding region, the cooling liquid distribution and the grinding temperature distribution, and achieving lowest grinding force and specific energy consumption, lowest grinding temperature and burn, lowest abrasion of the grinding wheel, optimal work-surface surface integrity, and the like. The comprehensive grinding performance of the head face grinding of the super-hard abrasive grinding wheel is improved.
Owner:SHENYANG LIGONG UNIV

Exchange decoupled cobalt/noble metal perpendicular recording media

A magnetic recording medium of the perpendicular type, for a disc drive. The magnetic recording material includes a Cobalt alloy layer interspersed with a noble metal layer. The initial graded material is paramagnetic to increase to the magnetic properties of perpendicular recording media into increase the signal to noise ratio. The final recording layer has 8-20 alternating multilayer of the Cobalt alloy and a noble metal.
Owner:SEAGATE TECH LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products