Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

18542 results about "Dielectric" patented technology

A dielectric (or dielectric material) is an electrical insulator that can be polarized by an applied electric field. When a dielectric is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor but only slightly shift from their average equilibrium positions causing dielectric polarization. Because of dielectric polarization, positive charges are displaced in the direction of the field and negative charges shift in the direction opposite to the field (for example if the field is moving in the positive x-axis, the negative charges will shift in the negative x-axis). This creates an internal electric field that reduces the overall field within the dielectric itself. If a dielectric is composed of weakly bonded molecules, those molecules not only become polarized, but also reorient so that their symmetry axes align to the field.

Surface wave antenna mountable on existing conductive structures

What is disclosed is a surface wave antenna configured to install on an electrically conductive structure. The surface wave antenna includes a first portion comprising a conductive element and an attachment element, and a second portion comprising a conductive element and an attachment element. The conductive element of the first portion and the conductive element of the second portion are configured to each form a conductive longitudinal portion of a horn receive element, and the attachment elements are configured to conductively couple the conductive elements together to form the horn receive element. The surface wave antenna also includes a dipole element comprising a first transmit element and a second transmit element. The surface wave antenna also includes a mounting element comprising a first dielectric mount and a second dielectric mount.
Owner:T MOBILE INNOVATIONS LLC

High-power dielectric seasoning for stable wafer-to-wafer thickness uniformity of dielectric CVD films

A method for seasoning a deposition chamber wherein the chamber components and walls are densely coated with a material that does not contain carbon prior to deposition of an organo-silicon material on a substrate. An optional carbon-containing layer may be deposited therebetween. A chamber cleaning method using low energy plasma and low pressure to remove residue from internal chamber surfaces is provided and may be combined with the seasoning process.
Owner:APPLIED MATERIALS INC

Precursors for depositing silicon containing films and processes thereof

Processes for precursors for silicon dielectric depositions of silicon nitride, silicon oxide and silicon oxynitride on a substrate using a hydrazinosilane of the formula:[R12N—NH]nSi(R2)4−nwhere each R1 is independently selected from alkyl groups of C1 to C6; each R2 is independently selected from the group consisting of hydrogen, alkyl, vinyl, allyl, and phenyl; and n=1–4. Some of the hydrazinosilanes are novel precursors.
Owner:VERSUM MATERIALS US LLC

METHOD OF DEPOSITING DIELECTRIC FILM HAVING Si-N BONDS BY MODIFIED PEALD METHOD

A method of forming dielectric film having Si—N bonds on a semiconductor substrate by plasma enhanced atomic layer deposition (PEALD), includes: introducing a nitrogen- and hydrogen-containing reactive gas and a rare gas into a reaction space inside which the semiconductor substrate is placed; introducing a hydrogen-containing silicon precursor in pulses of less than 1.0-second duration into the reaction space wherein the reactive gas and the rare gas are introduced; exiting a plasma in pulses of less than 1.0-second duration immediately after the silicon precursor is shut off; and maintaining the reactive gas and the rare gas as a purge of less than 2.0-second duration.
Owner:ASM JAPAN

Method of depositing dielectric film having Si-N bonds by modified peald method

A method of forming dielectric film having Si—N bonds on a semiconductor substrate by plasma enhanced atomic layer deposition (PEALD), includes: introducing a nitrogen- and hydrogen-containing reactive gas and a rare gas into a reaction space inside which the semiconductor substrate is placed; introducing a hydrogen-containing silicon precursor in pulses of less than 1.0-second duration into the reaction space wherein the reactive gas and the rare gas are introduced; exiting a plasma in pulses of less than 1.0-second duration immediately after the silicon precursor is shut off; and maintaining the reactive gas and the rare gas as a purge of less than 2.0-second duration.
Owner:ASM JAPAN

Mechanical enhancement of dense and porous organosilicate materials by UV exposure

Low dielectric materials and films comprising same have been identified for improved performance when used as interlevel dielectrics in integrated circuits as well as methods for making same. In one aspect of the present invention, an organosilicate glass film is exposed to an ultraviolet light source wherein the film after exposure has an at least 10% or greater improvement in its mechanical properties (i.e., material hardness and elastic modulus) compared to the as-deposited film.
Owner:VERSUM MATERIALS US LLC

Method and apparatus for integrating manual input

Apparatus and methods are disclosed for simultaneously tracking multiple finger and palm contacts as hands approach, touch, and slide across a proximity-sensing, compliant, and flexible multi-touch surface. The surface consists of compressible cushion dielectric, electrode, and circuitry layers. A simple proximity transduction circuit is placed under each electrode to maximize signal-to-noise ratio and to reduce wiring complexity. Such distributed transduction circuitry is economical for large surfaces when implemented with thin-film transistor techniques. Scanning and signal offset removal on an electrode array produces low-noise proximity images. Segmentation processing of each proximity image constructs a group of electrodes corresponding to each distinguishable contact and extracts shape, position and surface proximity features for each group. Groups in successive images which correspond to the same hand contact are linked by a persistent path tracker which also detects individual contact touchdown and liftoff. Combinatorial optimization modules associate each contact's path with a particular fingertip, thumb, or palm of either hand on the basis of biomechanical constraints and contact features. Classification of intuitive hand configurations and motions enables unprecedented integration of typing, resting, pointing, scrolling, 3D manipulation, and handwriting into a versatile, ergonomic computer input device.
Owner:APPLE INC

Method of forming conformal dielectric film having Si-N bonds by PECVD

A method of forming a conformal dielectric film having Si—N bonds on a semiconductor substrate by plasma enhanced chemical vapor deposition (PECVD) includes: introducing a nitrogen- and hydrogen-containing reactive gas and an additive gas into a reaction space inside which a semiconductor substrate is placed; applying RF power to the reaction space; and introducing a hydrogen-containing silicon precursor in pulses into the reaction space wherein a plasma is excited, thereby forming a conformal dielectric film having Si—N bonds on the substrate.
Owner:ASM JAPAN

Forming capping layer over metal wire structure using selective atomic layer deposition

Methods of forming a capping layer over a metal wire structure of a semiconductor device are disclosed. In one embodiment, the method includes providing a partially fabricated semiconductor device having exposed surfaces of the metal (e.g., copper) wire structure and a dielectric around the metal wire structure. The exposed surface of the metal wire structure is then activated by forming a seed layer thereon. The capping layer is then formed over the exposed surface of the metal wire structure by performing a selective atomic layer deposition (ALD) of a capping layer material onto the metal wire structure. As an alternative, the dielectric may be masked off to further assist the selectivity of the ALD. The invention also includes a semiconductor structure including the metal wire structure having an atomic layer deposition capping layer over an upper surface thereof.
Owner:IBM CORP

Nitridation of high-k dielectric films

The present invention promotes incorporation of nitrogen (e.g., nitridation) into high-k dielectric films using a low temperature process. Further, the present invention provides an in-situ method; that is formation of the high-k dielectric film and nitridation of the film are carried out in the same process chamber during deposition of the film, as opposed to the conventional post processing techniques. In another aspect, a method for depositing a multi-layer material for use as a gate dielectric layer in semiconductor devices is provided.
Owner:AVIZA TECHNOLOGY INC

Method for forming silazane-based dielectric film

A method of forming a dielectric film includes: introducing a source gas essentially constituted by Si, N, H, and optionally C and having at least one bond selected from Si—N, Si—Si, and Si—H into a reaction chamber where a substrate is placed; depositing a silazane-based film essentially constituted by Si, N, H, and optionally C on the substrate by plasma reaction at −50° C. to 50° C., wherein the film is free of exposure of a solvent constituted essentially by C, H, and optionally O; and heat-treating the silazane-based film on the substrate in a heat-treating chamber while introducing an oxygen-supplying source into the heat-treating chamber to release C from the film and increase Si—O bonds in the film.
Owner:ASM JAPAN

Multilayer multicomponent high-k films and methods for depositing the same

The present invention provides systems and methods for forming a multi-layer, multi-component high-k dielectric film. In some embodiments, the present invention provides systems and methods for forming high-k dielectric films that comprise hafnium, titanium, oxygen, nitrogen, and other components. In a further aspect of the present invention, the dielectric films are formed having composition gradients.
Owner:AVIZA TECHNOLOGY INC

Incorporation of nitrogen into high k dielectric film

A high k dielectric film and methods for forming the same are disclosed. The high k material includes two peaks of impurity concentration, particularly nitrogen, such as at a lower interface and upper interface, making the layer particularly suitable for transistor gate dielectric applications. The methods of formation include low temperature processes, particularly CVD using a remote plasma generator and atomic layer deposition using selective incorporation of nitrogen in the cyclic process. Advantageously, nitrogen levels are tailored during the deposition process and temperatures are low enough to avoid interdiffusion and allow maintenance of the desired impurity profile.
Owner:ASM IP HLDG BV

Method to control the interfacial layer for deposition of high dielectric constant films

Methods of forming an interfacial layer on a hydrogen-passivated substrate are provided. These methods utilize atomic layer deposition techniques incorporating metal nitrate-based precursors, such as hafnium nitrate or zirconium nitrate, without introducing a hydrating agent, or oxidizing agent, such as water, during the formation of the interfacial layer. Also provided are methods of forming high-k films, by first forming an interfacial layer on the surface of a hydrogen-passivated substrate, and then depositing one, or more, high-k dielectric films.
Owner:SHARP LAB OF AMERICA INC

Conformal nanolaminate dielectric deposition and etch back gap fill process

Conformal nanolaminate dielectric deposition and etch back processes that can fill high aspect ratio (typically at least 5:1, for example 6:1), narrow width (typically sub 0.13 micron, for example 0.1 micron or less) gaps with significantly reduced incidence of voids or weak spots involve the use of any suitable confirmal dielectric deposition technique and a dry etch back. The etch back part of the process involves a single step or an integrated multi-step (for example, two-step) procedure including an anisotropic dry etch followed by an isotropic dry etch. The all dry deposition and etch back process in a single tool increases throughput and reduces handling of wafers resulting in more efficient and higher quality nanolaminate dielectric gap fill operations.
Owner:NOVELLUS SYSTEMS

Method for forming silicon-containing dielectric film by cyclic deposition with side wall coverage control

A method of forming a dielectric film having Si—C bonds and / or Si—N bonds on a semiconductor substrate by cyclic deposition, includes: (i) conducting one or more cycles of cyclic deposition in a reaction space wherein a semiconductor substrate is placed, using a Si-containing precursor and a reactant gas; and (ii) before or after step (i), applying a pulse of RF power to the reaction space while supplying a rare gas and a treatment gas without supplying a Si-containing precursor, whereby a dielectric film having Si—C bonds and / or Si—N bonds is formed on the semiconductor substrate.
Owner:ASM IP HLDG BV

Atomic layer deposition of hafnium lanthanum oxides

There is provided an improved method for depositing thin films using precursors to deposit binary oxides by atomic layer deposition (ALD) techniques. Also disclosed is an ALD method for depositing a high-k dielectric such as hafnium lanthanum oxide (HfLaO) on a substrate. Embodiments of the present invention utilize a combination of ALD precursor elements and cycles to deposit a film with desired physical and electrical characteristics. Electronic components and systems that integrate devices fabricated with methods consistent with the present invention are also disclosed.
Owner:ASM IP HLDG BV

SiCOH dielectric

A porous composite material useful in semiconductor device manufacturing, in which the diameter (or characteristic dimension) of the pores and the pore size distribution (PSD) is controlled in a nanoscale manner and which exhibits improved cohesive strength (or equivalently, improved fracture toughness or reduced brittleness), and increased resistance to water degradation of properties such as stress-corrosion cracking, Cu ingress, and other critical properties is provided. The porous composite material is fabricating utilizing at least one bifunctional organic porogen as a precursor compound
Owner:INTEL CORP

Method of Forming Conformal Dielectric Film Having Si-N Bonds by PECVD

A method of forming a conformal dielectric film having Si—N bonds on a semiconductor substrate by plasma enhanced chemical vapor deposition (PECVD) includes: introducing a nitrogen- and hydrogen-containing reactive gas and an additive gas into a reaction space inside which a semiconductor substrate is placed; applying RF power to the reaction space; and introducing a hydrogen-containing silicon precursor in pulses into the reaction space wherein a plasma is excited, thereby forming a conformal dielectric film having Si—N bonds on the substrate.
Owner:ASM JAPAN

Low capacitance junction-isolation for bulk FinFET technology

ActiveUS7101763B1Good junction isolationLow capacitance benefitSemiconductor/solid-state device manufacturingSemiconductor devicesDielectricCapacitance
The present invention provides a SiGe-based bulk integration scheme for generating FinFET devices on a bulk Si substrate in which a simple etch, mask, ion implant set of sequences have been added to accomplish good junction isolation while maintaining the low capacitance benefits of FinFETs. The method of the present invention includes providing a structure including a bottom Si layer and a patterned stack comprising a SiGe layer and a top Si layer on the bottom Si layer; forming a well region and isolation regions via implantation within the bottom Si layer; forming an undercut region beneath the top Si layer by etching back the SiGe layer; and filling the undercut with a dielectric to provide device isolation, wherein the dielectric has an outer vertical edge that is aligned to an outer vertical edge of the top Si layer.
Owner:GLOBALFOUNDRIES US INC

Method for forming silazane-based dielectric film

A method of forming a dielectric film includes: introducing a source gas essentially constituted by Si, N, H, and optionally C and having at least one bond selected from Si—N, Si—Si, and Si—H into a reaction chamber where a substrate is placed; depositing a silazane-based film essentially constituted by Si, N, H, and optionally C on the substrate by plasma reaction at −50° C. to 50° C., wherein the film is free of exposure of a solvent constituted essentially by C, H, and optionally O; and heat-treating the silazane-based film on the substrate in a heat-treating chamber while introducing an oxygen-supplying source into the heat-treating chamber to release C from the film and increase Si—O bonds in the film.
Owner:ASM JAPAN

Method for silicon based dielectric chemical vapor deposition

Embodiments of the invention generally provide a method for depositing silicon-containing films. In one embodiment, a method for depositing silicon-containing material film on a substrate includes flowing a nitrogen and carbon containing chemical into a deposition chamber, flowing a silicon-containing source chemical having silicon-nitrogen bonds into the processing chamber, and heating the substrate disposed in the chamber to a temperature less than about 550 degrees Celsius. In another embodiment, the silicon containing chemical is trisilylamine and the nitrogen and carbon containing chemical is (CH3)3—N.
Owner:APPLIED MATERIALS INC

Method for improving process control and film conformality of PECVD film

A method for forming a silicon-based dielectric film on a substrate with a single deposition process operation using pulsed plasma enhanced chemical vapor deposition (PECVD) wherein the high frequency radio frequency power of the plasma is pulsed, allows enhanced control, efficiency and product quality of the PECVD process. Pulsing the high frequency RF power of the plasma reduces the deposited film thickness per unit time the high frequency RF power of the plasma is on. This yields silicon-based dielectric films that are both thin and conformal.
Owner:NOVELLUS SYSTEMS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products