Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

29647 results about "Ultraviolet" patented technology

Ultraviolet (UV) is electromagnetic radiation with wavelength from 10 nm to 400 nm, shorter than that of visible light but longer than X-rays. UV radiation is present in sunlight, and contributes about 10% of the total electromagnetic radiation output from the Sun. It is also produced by electric arcs and specialized lights, such as mercury-vapor lamps, tanning lamps, and black lights. Although long-wavelength ultraviolet is not considered an ionizing radiation because its photons lack the energy to ionize atoms, it can cause chemical reactions and causes many substances to glow or fluoresce. Consequently, the chemical and biological effects of UV are greater than simple heating effects, and many practical applications of UV radiation derive from its interactions with organic molecules.

Method of forming crystalline semiconductor thin film on base substrate, lamination formed with crystalline semiconductor thin film and color filter

A method of forming a crystalline semiconductor thin film on a base material which can be prepared at a low temperature by simple step and device, the method including a processing step of applying UV-rays to an amorphous semiconductor thin film provided on a base material while keeping a temperature at not less than 25° C. and not more than 300° C. in a vacuum or a reducing gas atmosphere, as well as a substrate having the semiconductor thin film provided on the base material, a substrate for forming a color filter and a color filter using the substrate.
Owner:FUJIFILM BUSINESS INNOVATION CORP

Ultraviolet laser apparatus and exposure apparatus using same

An ultraviolet laser apparatus having a single-wavelength oscillating laser generating laser light between an infrared band and a visible band, an optical amplifier for amplifying the laser light, and a wavelength converting portion converting the amplified laser light into ultraviolet light using a non-linear optical crystal. An exposure apparatus transfers a pattern image of a mask onto a substrate and includes a light source having a laser apparatus emitting laser light having a single wavelength, a first fiber optical amplifier for amplifying the laser light, a light dividing device for dividing or branching the amplified laser light into plural lights, and second fiber optical amplifiers for amplifying the plural divided or branched lights, respectively, and a transmission optical system for transmitting the laser light emitted from the light source to the exposure apparatus.
Owner:NIKON CORP

Luminous lamp having an ultraviolet filtering and explosion proof thin film

A luminous lamp having an ultraviolet filtering and explosion-proof thin film is disclosed. An outside of a lamp is coated by a transparent layer which comprises phosphor powder. Energy generated by the lamp is absorbed by the phosphor powder while the lamp is shining. The phosphor powder would release energy to shot brilliance, so as to provide auxiliary lighting after turning off the lamp. Additionally, the phosphor powder can absorb harmful ultraviolet and other harmful radiations with shorter wavelengths to be one part of the thin film for filtering harmful radiations. The harmful ultraviolet can be transformed by the phosphor powder into visible light to red shift radiations with short wavelengths; hence the harmful radiations with shorter wavelengths can be eliminated. The illumination of visible light can be further increased. The transparent layer can catch broken fragments of the outside of the lamp to decrease accidents when the lamp is broken.
Owner:NANOFORCE TECH CORP

Tandem UV chamber for curing dielectric materials

An ultraviolet (UV) cure chamber enables curing a dielectric material disposed on a substrate and in situ cleaning thereof. A tandem process chamber provides two separate and adjacent process regions defined by a body covered with a lid having windows aligned respectively above each process region. One or more UV bulbs per process region that are covered by housings coupled to the lid emit UV light directed through the windows onto substrates located within the process regions. The UV bulbs can be an array of light emitting diodes or bulbs utilizing a source such as microwave or radio frequency. The UV light can be pulsed during a cure process. Using oxygen radical / ozone generated remotely and / or in-situ accomplishes cleaning of the chamber. Use of lamp arrays, relative motion of the substrate and lamp head, and real-time modification of lamp reflector shape and / or position can enhance uniformity of substrate illumination.
Owner:APPLIED MATERIALS INC

Method to increase silicon nitride tensile stress using nitrogen plasma in-situ treatment and ex-situ UV cure

Stress of a silicon nitride layer may be enhanced by deposition at higher temperatures. Employing an apparatus that allows heating of a substrate to substantially greater than 400° C. (for example a heater made from ceramic rather than aluminum), the silicon nitride film as-deposited may exhibit enhanced stress allowing for improved performance of the underlying MOS transistor device. In accordance with alternative embodiments, a deposited silicon nitride film is exposed to curing with ultraviolet (UV) radiation at an elevated temperature, thereby helping remove hydrogen from the film and increasing film stress. In accordance with still other embodiments, a silicon nitride film is formed utilizing an integrated process employing a number of deposition / curing cycles to preserve integrity of the film at the sharp corner of the underlying raised feature. Adhesion between successive layers may be promoted by inclusion of a post-UV cure plasma treatment in each cycle.
Owner:APPLIED MATERIALS INC

Methods for forming a dielectric layer within trenches

A method for forming a semiconductor structure includes reacting a silicon precursor and an atomic oxygen or nitrogen precursor at a processing temperature of about 150° C. or less to form a silicon oxide or silicon-nitrogen containing layer over a substrate. The silicon oxide or silicon-nitrogen containing layer is ultra-violet (UV) cured within an oxygen-containing environment.
Owner:APPLIED MATERIALS INC

Method to increase silicon nitride tensile stress using nitrogen plasma in-situ treatment and ex-situ UV cure

Stress of a silicon nitride layer may be enhanced by deposition at higher temperatures. Employing an apparatus that allows heating of a substrate to substantially greater than 400° C. (for example a heater made from ceramic rather than aluminum), the silicon nitride film as-deposited may exhibit enhanced stress allowing for improved performance of the underlying MOS transistor device. In accordance with some embodiments, a deposited silicon nitride film is exposed to curing with plasma and ultraviolet (UV) radiation, thereby helping remove hydrogen from the film and increasing film stress. In accordance with other embodiments, a silicon nitride film is formed utilizing an integrated process employing a number of deposition / curing cycles to preserve integrity of the film at the sharp corner of the underlying raised feature. Adhesion between successive layers may be promoted by inclusion of a post-UV cure plasma treatment in each cycle.
Owner:APPLIED MATERIALS INC

Multiple component solid state white light

A white light emitting lamp is disclosed comprising a solid state ultra violet (UV) emitter that emits light in the UV wavelength spectrum. A conversion material is arranged to absorb at least some of the light emitting from the UV emitter and re-emit light at one or more different wavelengths of light. One or more complimentary solid state emitters are included that emit at different wavelengths of light than the UV emitter and the conversion material. The lamp emits a white light combination of light emitted from the complimentary emitters and from the conversion material, with the white light having high efficacy and good color rendering. Other embodiments of white light emitting lamp according to the present invention comprises a solid state laser instead of a UV emitter. A high flux white emitting lamp embodiment according to the invention comprises a large area light emitting diode (LED) that emits light at a first wavelength spectrum and includes a conversion material. A plurality of complimentary solid state emitters surround the large area LED, with each emitter emitting light in a spectrum different from the large area LED and conversion material such that the lamp emits a balanced white light. Scattering particles can be included in each of the embodiments to scatter the light from the emitters, conversion material and complimentary emitters to provide a more uniform emission.
Owner:CREELED INC

Apparatus and method for treating a substrate with UV radiation using primary and secondary reflectors

Embodiments of the invention relate generally to an ultraviolet (UV) cure chamber for curing a dielectric material disposed on a substrate and to methods of curing dielectric materials using UV radiation. A substrate processing tool according to one embodiment comprises a body defining a substrate processing region; a substrate support adapted to support a substrate within the substrate processing region; an ultraviolet radiation lamp spaced apart from the substrate support, the lamp configured to transmit ultraviolet radiation to a substrate positioned on the substrate support; and a motor operatively coupled to rotate at least one of the ultraviolet radiation lamp or substrate support at least 180 degrees relative to each other. The substrate processing tool may further comprise one or more reflectors adapted to generate a flood pattern of ultraviolet radiation over the substrate that has complementary high and low intensity areas which combine to generate a substantially uniform irradiance pattern if rotated. Other embodiments are also disclosed.
Owner:APPLIED MATERIALS INC

Ultraviolet assisted pore sealing of porous low k dielectric films

Processes for sealing porous low k dielectric film generally comprises exposing the porous surface of the porous low k dielectric film to ultraviolet (UV) radiation at intensities, times, wavelengths and in an atmosphere effective to seal the porous dielectric surface by means of carbonization, oxidation, and / or film densification. The surface of the surface of the porous low k material is sealed to a depth less than or equal to about 20 nanometers, wherein the surface is substantially free of pores after the UV exposure.
Owner:AXCELIS TECHNOLOGIES

UV assisted silylation for recovery and pore sealing of damaged low K films

Methods for the repair of damaged low k films are provided. Damage to the low k films occurs during processing of the film such as during etching, ashing, and planarization. The processing of the low k film causes water to store in the pores of the film and further causes hydrophilic compounds to form in the low k film structure. Repair processes incorporating ultraviolet (UV) radiation and silylation compounds remove the water from the pores and further remove the hydrophilic compounds from the low k film structure.
Owner:APPLIED MATERIALS INC

UV assisted silylation for recovery and pore sealing of damaged low k films

ActiveUS20120270339A1Dielectric constant be lowerSemiconductor/solid-state device manufacturingUltravioletSilylation
Methods for the repair of damaged low k films are provided. Damage to the low k films occurs during processing of the film such as during etching, ashing, and planarization. The processing of the low k film causes water to store in the pores of the film and further causes hydrophilic compounds to form in the low k film structure. Repair processes incorporating ultraviolet (UV) radiation and silylation compounds remove the water from the pores and further remove the hydrophilic compounds from the low k film structure.
Owner:APPLIED MATERIALS INC

UV Irradiation Apparatus with Cleaning Mechanism and Method for Cleaning UV Irradiation Apparatus

A UV irradiation apparatus for processing a semiconductor substrate includes: a UV lamp unit; a reaction chamber disposed under the UV lamp unit; a gas ring with nozzles serving as a first electrode between the UV lamp unit and the reaction chamber; a transmission window supported by the gas ring; an RF shield which covers a surface of the transmission window facing the UV lamp unit; a second electrode disposed in the reaction chamber for generating a plasma between the first and second electrodes; and an RF power source for supplying RF power to one of the first or second electrode.
Owner:ASM IP HLDG BV

Calibration method of UV sensor for UV curing

A method for managing UV irradiation for treating substrates in the course of treating multiple substrates consecutively with UV light, includes: exposing a first UV sensor to the UV light at first intervals to measure illumination intensity of the UV light so as to adjust the illumination intensity to a desired level based on the measured illumination intensity; and exposing a second UV sensor to the UV light at second intervals to measure illumination intensity of the UV light so as to calibrate the first UV sensor by equalizing the illumination intensity measured by the first UV sensor substantially with the illumination intensity measured by the second UV sensor, wherein each second interval is longer than each first interval.
Owner:ASM JAPAN

UV-Curing Apparatus Provided With Wavelength-Tuned Excimer Lamp and Method of Processing Semiconductor Substrate Using Same

A UV irradiation apparatus for processing a semiconductor substrate includes: a UV lamp unit having at least one dielectric barrier discharge excimer lamp which is constituted by a luminous tube containing a rare gas wherein an inner surface of the luminous tube is coated with a fluorescent substance having a peak emission spectrum in a wavelength range of 190 nm to 350 nm; and a reaction chamber disposed under the UV lamp unit and connected thereto via a transmission window.
Owner:ASM IP HLDG BV

Sequential UV induced chemical vapor deposition

Ion-induced, UV-induced, and electron-induced sequential chemical vapor deposition (CVD) processes are disclosed where an ion flux, a flux of ultra-violet radiation, or an electron flux, respectively, is used to induce the chemical reaction in the process. The process for depositing a thin film on a substrate includes introducing a flow of a first reactant gas in vapor phase into a process chamber where the gas forms an adsorbed saturated layer on the substrate and exposing the substrate to a flux of ions, a flux of ultra-violet radiation, or a flux of electrons for inducing a chemical reaction of the adsorbed layer of the first reactant gas to form the thin film. A second reactant gas can be used to form a compound thin film. The ion-induced, UV-induced, and electron-induced sequential CVD process of the present invention can be repeated to form a thin film of the desired thickness.
Owner:NOVELLUS SYSTEMS

UV treatment of etch stop and hard mask films for selectivity and hermeticity enhancement

A method for the ultraviolet (UV) treatment of etch stop and hard mask film increases etch selectivity and hermeticity by removing hydrogen, cross-linking, and increasing density. The method is particularly applicable in the context of damascene processing. A method provides for forming a semiconductor device by depositing an etch stop film or a hard mask film on a substrate and exposing the film to UV radiation and optionally thermal energy. The UV exposure may be direct or through another dielectric layer.
Owner:NOVELLUS SYSTEMS

Method for curing a porous low dielectric constant dielectric film

A method of curing a low dielectric constant (low-k) dielectric film on a substrate is described, wherein the dielectric constant of the low-k dielectric film is less than a value of approximately 4. The method comprises exposing the low-k dielectric film to infrared (IR) radiation and ultraviolet (UV) radiation.
Owner:TOKYO ELECTRON LTD

UV Irradiation Apparatus Having UV Lamp-Shared Multiple Process Stations

A UV irradiation apparatus for treating substrates includes: at least two process stations each provided with a UV transmissive window; at least one electric UV lamp using two electrodes in a gas tube extending over the UV transmissive windows of the process stations aligned along the gas tube and shared by the process stations; a UV transmissive zone disposed between the UV lamp and the process stations and provided with reflectors; and shutters for blocking UV light from being transmitted to the respective process stations independently.
Owner:ASM JAPAN

Multi-step system and method for curing a dielectric film

A multi-step system and method for curing a dielectric film in which the system includes a drying system configured to reduce the amount of contaminants, such as moisture, in the dielectric film. The system further includes a curing system coupled to the drying system, and configured to treat the dielectric film with ultraviolet (UV) radiation and infrared (IR) radiation in order to cure the dielectric film.
Owner:TOKYO ELECTRON LTD

Apparatus and method for exposing a substrate to UV radiation using asymmetric reflectors

Embodiments of the invention relate generally to an ultraviolet (UV) cure chamber for curing a dielectric material disposed on a substrate and to methods of curing dielectric materials using UV radiation. A substrate processing tool according to one embodiment comprises a body defining a substrate processing region; a substrate support adapted to support a substrate within the substrate processing region; an ultraviolet radiation lamp spaced apart from the substrate support, the lamp configured to transmit ultraviolet radiation to a substrate positioned on the substrate support; and a motor operatively coupled to rotate at least one of the ultraviolet radiation lamp or substrate support at least 180 degrees relative to each other. The substrate processing tool may further comprise one or more reflectors adapted to generate a flood pattern of ultraviolet radiation over the substrate that has complementary high and low intensity areas which combine to generate a substantially uniform irradiance pattern if rotated. Other embodiments are also disclosed.
Owner:APPLIED MATERIALS INC

Method for curing a dielectric film

A method of curing a low dielectric constant (low-k) dielectric film on a substrate is described, wherein the dielectric constant of the low-k dielectric film is less than a value of approximately 4. The method comprises exposing the low-k dielectric film to ultraviolet (UV) radiation. Following the UV exposure, the dielectric film is exposed to IR radiation.
Owner:TOKYO ELECTRON LTD

Photoresist monomers, polymers thereof, and photoresist compositions containing the same

Dipropargyl acetamide derivatives of following Formula 1 which are photoresist monomers, polymers thereof, and photoresist compositions containing the same. The photoresist polymer has high etching resistance, adhesiveness and post-exposure delay stability. As a result, the photoresist composition is suitable to form a fine pattern in a deep ultraviolet region.wherein, n is an integer from 0 to 5.
Owner:SK HYNIX INC

Method to increase silicon nitride tensile stress using nitrogen plasma in-situ treatment and ex-situ UV cure

Stress of a silicon nitride layer may be enhanced by deposition at higher temperatures. Employing an apparatus that allows heating of a substrate to substantially greater than 400° C. (for example a heater made from ceramic rather than aluminum), the silicon nitride film as-deposited may exhibit enhanced stress allowing for improved performance of the underlying MOS transistor device. In accordance with alternative embodiments, a deposited silicon nitride film is exposed to curing with ultraviolet (UV) radiation at an elevated temperature, thereby helping remove hydrogen from the film and increasing film stress. In accordance with still other embodiments, a silicon nitride film is formed utilizing an integrated process employing a number of deposition / curing cycles to preserve integrity of the film at the sharp corner of the underlying raised feature. Adhesion between successive layers may be promoted by inclusion of a post-UV cure plasma treatment in each cycle.
Owner:APPLIED MATERIALS INC

Dielectric material treatment system and method of operating

A system for curing a low dielectric constant (low-k) dielectric film on a substrate is described, wherein the dielectric constant of the low-k dielectric film is less than a value of approximately 4. The system comprises one or more process modules configured for exposing the low-k dielectric film to electromagnetic (EM) radiation, such as infrared (IR) radiation and ultraviolet (UV) radiation.
Owner:TOKYO ELECTRON LTD

Multi-lens camera

A camera with multiple lenses and multiple sensors wherein each lens / sensor pair generates a sub-image of a final photograph or video. Different embodiments include: manufacturing all lenses as a single component; manufacturing all sensors as one piece of silicon; different lenses incorporate filters for different wavelengths, including IR and UV; non-circular lenses; different lenses are different focal lengths; different lenses focus at different distances; selection of sharpest sub-image; blurring of selected sub-images; different lens / sensor pairs have different exposures; selection of optimum exposure sub-images; identification of distinct objects based on distance; stereo imaging in more than one axis; and dynamic optical center-line calibration.
Owner:ZETTA RES & DEV - FORC SERIES

Extreme ultra-violet sensitivity reduction using shrink and growth method

Provided is a method for patterning a substrate, comprising: forming a layer of radiation-sensitive material on a substrate; preparing a pattern in the layer of radiation-sensitive material using a lithographic process, the pattern being characterized by a critical dimension (CD) and a roughness; following the preparing the pattern, performing a CD shrink process to reduce the CD to a reduced CD; and performing a growth process to grow the reduced CD to a target CD. Roughness includes a line edge roughness (LER), a line width roughness (LWR), or both LER and LWR. Performing the CD shrink process comprises: coating the pattern with a hard mask, the coating generating a hard mask coated resist; baking the hard mask coated resist in a temperature range for a time period, the baking generating a baked coated resist; and developing the baked coated resist in deionized water.
Owner:TOKYO ELECTRON LTD

Industrial Wastewater Microwave Electrodeless UV Photocatalysis-Double Membrane Separation Coupling Treatment Device

The present invention is an industrial waste water microwave electrodeless ultraviolet photocatalysis-dual membrane separation coupling treatment device, the device mainly consists of a reactor (1), a membrane separation system (2), a microwave electrodeless ultraviolet light source system (4), an aeration system, and an ozone tail gas decomposition device (7) connected to the reactor, and an inlet and outlet water system, wherein: the upper and lower parts of the reactor are respectively the reaction zone and the aeration zone, which are separated by a water distribution plate (5); the membrane separation system The microwave electrodeless ultraviolet light source system is located in the reaction zone and is separated by a corrugated partition (3); the aeration system is composed of a microporous aeration head (6) and a blower (8), and the microporous aeration head is located in the aeration At the bottom of the zone, the blower sends air to the aeration zone through the air duct. The invention has the characteristics of high reaction rate, complete degradation of organic matter, long-term operation and the like, and has strong operability and high safety. It is suitable for the treatment of refractory organic industrial wastewater, and it is also suitable for sterilization and disinfection in the field of water supply.
Owner:WUHAN TEXTILE UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products