Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

76292 results about "Light-emitting diode" patented technology

A light-emitting diode (LED) is a semiconductor light source that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. The color of the light (corresponding to the energy of the photons) is determined by the energy required for electrons to cross the band gap of the semiconductor. White light is obtained by using multiple semiconductors or a layer of light-emitting phosphor on the semiconductor device.

Pixel structure of active matrix organic light-emitting diode and method for fabricating the same

A pixel structure of an active matrix organic light-emitting diode (AMOLED) includes an organic light-emitting diode (OLED), a data line, at least one scan line, at least one switch thin film transistor (TFT), at least one driving TFT and at least one storage capacitor with two transparent electrodes. Since both the electrodes of the transparent storage capacitor are formed by transparent material, the aperture ratio of the pixel and the area of the capacitor largely increase and can reach 50%˜95% of a pixel area. Thus, the display quality of an AMOLED panel can be improved.
Owner:IND TECH RES INST

Wafer level phosphor coating method and devices fabricated utilizing method

Methods for fabricating light emitting diode (LED) chips comprising providing a plurality of LEDs typically on a substrate. Pedestals are deposited on the LEDs with each of the pedestals in electrical contact with one of the LEDs. A coating is formed over the LEDs with the coating burying at least some of the pedestals. The coating is then planarized to expose at least some of the buried pedestals while leaving at least some of said coating on said LEDs. The exposed pedestals can then be contacted such as by wire bonds. The present invention discloses similar methods used for fabricating LED chips having LEDs that are flip-chip bonded on a carrier substrate and for fabricating other semiconductor devices. LED chip wafers and LED chips are also disclosed that are fabricated using the disclosed methods.
Owner:CREELED INC

Wafer level phosphor coating method and devices fabricated utilizing method

Methods for fabricating light emitting diode (LED) chips comprising providing a plurality of LEDs typically on a substrate. Pedestals are deposited on the LEDs with each of the pedestals in electrical contact with one of the LEDs. A coating is formed over the LEDs with the coating burying at least some of the pedestals. The coating is then planarized to expose at least some of the buried pedestals while leaving at least some of said coating on said LEDs. The exposed pedestals can then be contacted such as by wire bonds. The present invention discloses similar methods used for fabricating LED chips having LEDs that are flip-chip bonded on a carrier substrate and for fabricating other semiconductor devices. LED chip wafers and LED chips are also disclosed that are fabricated using the disclosed methods.
Owner:CREELED INC

Light emitting diode based products

Various exemplary implementations of light emitting diode (LED) based illumination products and methods are disclosed including, but not limited to, glow sticks, key chains, toys, balls, various game accessories, light bulbs, night lights, wall lights, wall switches, wall sockets, wall panels, modular lights, flexible lights, automotive lights, wearable accessories, light ropes, decorative lights such as icicles and icicle strings, light tubes, insect control lights and methods, and lighted air fresheners / scent dispensers. Any of the foregoing devices may be equipped with various types of user interfaces (both “local” and “remote”) to control light generated from the device. Additionally, devices may be controlled via light control information or programs stored in device memory and / or transmitted or downloaded to the devices (e.g., devices may be controlled individually or collectively in groups via a network, glow sticks or other products may be downloaded with programming information that is stored in memory, etc.). Devices also may include sensors so that the generated light may change in response to various operating and / or environmental conditions or a user input. Various optical processing devices which may be used with any of the devices (e.g., reflectors, diffusers, etc.) also are disclosed.
Owner:PHILIPS LIGHTING NORTH AMERICA CORPORATION

METHOD FOR FABRICATION OF SEMIPOLAR (Al, In, Ga, B)N BASED LIGHT EMITTING DIODES

A yellow Light Emitting Diode (LED) with a peak emission wavelength in the range 560-580 nm is disclosed. The LED is grown on one or more III-nitride-based semipolar planes and an active layer of the LED is composed of indium (In) containing single or multi-quantum well structures. The LED quantum wells have a thickness in the range 2-7 nm. A multi-color LED or white LED comprised of at least one semipolar yellow LED is also disclosed.
Owner:RGT UNIV OF CALIFORNIA

Light-emitting diode based products

High-brightness LEDs, combined with a processor for control, can produce a variety of pleasing effects for display and illumination. A system disclosed herein uses high-brightness, processor-controlled LEDs in combination with diffuse materials to produce color-changing effects. The systems described herein may be usefully employed to bring autonomous color-changing ability and effects to a variety of consumer products and other household items. The system may also include sensors so that the illumination of the LEDs might change in response to environmental conditions or a user input. Additionally, the system may include an interface to a network, so that the illumination of the LEDs may be controlled via the network.
Owner:PHILIPS LIGHTING NORTH AMERICA CORPORATION

Light emitting diode (LED) light bulbs

A light emitting diode (LED) light bulb that includes plural individual elements as sub-assembly elements of the overall light bulb. Different sub-assembly elements of a lens, a LED printed circuit board, a housing also functioning as a heat sink, a lower housing, and other individual sub-assembly components are utilized. The LED printed circuit board sub-assembly containing the LEDs can also be provided relatively close to a base.
Owner:DIALIGHT CORP

Apparatus, Method and System for Providing AC Line Power to Lighting Devices

An apparatus, method and system are disclosed for providing AC line power to lighting devices such as light emitting diodes (“LEDs”). An exemplary apparatus comprises: a plurality of LEDs coupled in series to form a plurality of segments of LEDs; first and second current regulators; a current sensor; and a controller to monitor a current level through a series LED current path, and to provide for first or second segments of LEDs to be in or out of the series LED current path at different current levels. A voltage regulator is also utilized to provide a voltage during a zero-crossing interval of the AC voltage. In an exemplary embodiment, first and second segments of LEDs are both in the series LED current path regulated at a lower current level compared to when only the first segment of LEDs is in the series LED current path.
Owner:CHEMTRON RES

Close loop electrophoretic deposition of semiconductor devices

One close loop system and method for electrophoretic deposition (EPD) of phosphor material on light emitting diodes (LEDs). The system comprises a deposition chamber sealed from ambient air. A mixture of phosphor material and solution is provided to the chamber with the mixture also being sealed from ambient air. A carrier holds a batch of LEDs in the chamber with the mixture contacting the areas of the LEDs for phosphor deposition. A voltage supply applies a voltage to the LEDs and the mixture to cause the phosphor material to deposit on the LEDs at the mixture contacting areas.
Owner:CREELED INC

Methods and apparatus for contactless gesture recognition

Systems and methods are described for performing contactless gesture recognition for a computing device, such as a mobile computing device. An example technique for managing a gesture-based input mechanism for a computing device described herein includes identifying parameters of the computing device relating to accuracy of gesture classification performed by the gesture-based input mechanism and managing a power consumption level of at least an infrared (IR) light emitting diode (LED) or an IR proximity sensor of the gesture-based input mechanism based on the parameters of the computing device.
Owner:QUALCOMM INC

Shifting spectral content in solid state light emitters by spatially separating lumiphor films

A lighting device, comprising at least one solid state light emitter, at least one first lumiphor and at least one second lumiphor which is spaced from the first lumiphor. The solid state light emitter can be a light emitting diode. A method of making a lighting device, comprising positioning at least one second lumiphor spaced from and outside of at least one first lumiphor relative to at least one solid state light emitter. A method of lighting, comprising providing electricity to at least one solid state light emitter in such a lighting device.
Owner:IDEAL IND LIGHTING LLC

Tandem UV chamber for curing dielectric materials

An ultraviolet (UV) cure chamber enables curing a dielectric material disposed on a substrate and in situ cleaning thereof. A tandem process chamber provides two separate and adjacent process regions defined by a body covered with a lid having windows aligned respectively above each process region. One or more UV bulbs per process region that are covered by housings coupled to the lid emit UV light directed through the windows onto substrates located within the process regions. The UV bulbs can be an array of light emitting diodes or bulbs utilizing a source such as microwave or radio frequency. The UV light can be pulsed during a cure process. Using oxygen radical / ozone generated remotely and / or in-situ accomplishes cleaning of the chamber. Use of lamp arrays, relative motion of the substrate and lamp head, and real-time modification of lamp reflector shape and / or position can enhance uniformity of substrate illumination.
Owner:APPLIED MATERIALS INC

Aromatic amine derivative and organic electroluminescence device using the same

Provided are an organic electroluminescent device including an aromatic amine derivative formed of a specific structure having a thiophene structure and an organic thin film layer interposed between a cathode and an anode and formed of one layer or a plurality of layers including at least a light emitting layer, in which at least one layer of the organic thin film contains the aromatic amine derivative alone or as a component of a mixture, the organic electroluminescent device in which molecules hardly crystallize, and which decreases a driving voltage, can be produced with improved yields upon the production of the organic electroluminescent device, and has a long lifetime, and an aromatic amine derivative realizing the organic electroluminescent device.
Owner:IDEMITSU KOSAN CO LTD

Electronic devices having a header and antiparallel connected light emitting diodes for producing light from AC current

A light engine comprises a pair of LED active elements mounted on a common header having first and second terminals. The first terminal is connected to the cathode of the first LED active element and the anode of the second LED active element, while the second terminal is connected to the anode of the first LED active element and the cathode of the second LED active element, thereby connecting the LEDs in an anti-parallel arrangement. A light engine having a single insulating or semi-insulating substrate having formed thereon plural LED active elements with associated p- and n-type contacts forming cathode and anode contacts, respectively, for each LED active element is also provided. The LED active elements may be mounted in a flip-chip configuration on a header having a plurality of leads. The header may include a pair of leads adapted such that two LEDs may be flip-mounted thereon with the anode of the first LED and the cathode of the second LED contacting one lead, while the cathode of the first LED and the anode of the second LED contact the other lead. In addition, the header may be adapted to permit a substrate having multiple active elements to be mounted thereon.
Owner:IDEAL IND LIGHTING LLC

Water dispersible polypyrroles made with polymeric acid colloids for electronics applications

Compositions are provided comprising aqueous dispersions of at least one polypyrrole and at least one colloid-forming polymeric acids at methods of making such compositions. The new compositions are useful in electronic devices including organic electronic devices such as organic light emitting diode displays, memory storage, electromagnetic shielding, electrochromic displays,and thin film transistors, field effect resistance devices.
Owner:EI DU PONT DE NEMOURS & CO

Monitor configuration system

A monitor configuration system which communicates with a physiological sensor, the monitor configuration system including one or more processors and an instrument manager module running on the one or more processors. At least one of the one or more processors communicates with the sensor and calculates at least one physiological parameters responsive to the sensor. The instrument manager controls the calculation, display and / or alarms based upon the physiological parameters. A configuration indicator identifies the configuration profile. In one aspect of the invention, the physiological sensor is a optical sensor that includes at least one light emitting diode and at least one detector.
Owner:JPMORGAN CHASE BANK NA

Color variations in a dimmable lighting device with stable color temperature light sources

A method and system allow a lighting device having light sources with multiple color temperatures to vary a color temperature of the lighting device in response to changing dimming levels. The light sources are non-incandescent light sources, such as light emitting diodes and / or gas-discharge lights. A dimmer circuit provides a dimming signal that indicates a selected dimming level. The lighting device includes a light source driver and a light source driver controller that cooperate to vary drive currents to the light sources in response to the selected dimming level. By varying the drive currents in different relative amounts, the color temperature of the lighting device changes in response to dimming level changes. In at least one embodiment, changes in the color temperature of the lighting device in response to the dimming level changes simulates the color temperature changes of an incandescent light source.
Owner:SIGNIFY HLDG BV

Aromatic amine derivatives and organic electroluminescence device using the same

Provided are an organic electroluminescence device and an aromatic amine derivative for realizing the device. The aromatic amine derivative improves the luminous efficiency of an organic electroluminescence device using the derivative, and its molecules hardly crystallize. The organic electroluminescence device has an organic thin film layer composed of one or a plurality of layers including at least a light emitting layer, the organic thin film layer being interposed between a cathode and an anode, and at least one layer of the organic thin film layer, especially a hole transporting layer contains the aromatic amine derivative alone or as a component of a mixture, so the organic electroluminescence device can be produced in improved yield, and has a long lifetime.
Owner:IDEMITSU KOSAN CO LTD

Light-emitting diode based products

High-brightness LEDs, combined with a processor for control, can produce a variety of pleasing effects for display and illumination. A system disclosed herein uses high-brightness, processor-controlled LEDs in combination with diffuse materials to produce color-changing effects. The systems described herein may be usefully employed to bring autonomous color-changing ability and effects to a variety of consumer products and other household items. The system may also include sensors so that the illumination of the LEDs might change in response to environmental conditions or a user input. Additionally, the system may include an interface to a network, so that the illumination of the LEDs may be controlled via the network.
Owner:PHILIPS LIGHTING NORTH AMERICA CORPORATION

Wafer-level light emitting diode package and method of fabricating the same

Exemplary embodiments of the present invention provide a wafer-level light emitting diode (LED) package and a method of fabricating the same. The LED package includes a semiconductor stack including a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer; a plurality of contact holes arranged in the second conductive type semiconductor layer and the active layer, the contact holes exposing the first conductive type semiconductor layer; a first bump arranged on a first side of the semiconductor stack, the first bump being electrically connected to the first conductive type semiconductor layer via the plurality of contact holes; a second bump arranged on the first side of the semiconductor stack, the second bump being electrically connected to the second conductive type semiconductor layer; and a protective insulation layer covering a sidewall of the semiconductor stack.
Owner:SEOUL SEMICONDUCTOR

Apparatus, Method and System for Providing AC Line Power to Lighting Devices

An apparatus, method and system are disclosed for providing AC line power to lighting devices such as light emitting diodes (“LEDs”). An exemplary apparatus comprises: a plurality of LEDs coupled in series to form a first plurality of segments of LEDs; a plurality of switches coupled to the plurality of segments of LEDs to switch a selected segment into or out of a series LED current path in response to a control signal; a memory; and a controller which, in response to a first parameter and during a first part of an AC voltage interval, determines and stores in the memory a value of a second parameter and generates a first control signal to switch a corresponding segment of LEDs into the series LED current path; and during a second part of the AC voltage interval, when a current value of the second parameter is substantially equal to the stored value, generates a second control signal to switch a corresponding segment of LEDs out of the first series LED current path.
Owner:CHEMTRON RES

Multiple component solid state white light

A white light emitting lamp is disclosed comprising a solid state ultra violet (UV) emitter that emits light in the UV wavelength spectrum. A conversion material is arranged to absorb at least some of the light emitting from the UV emitter and re-emit light at one or more different wavelengths of light. One or more complimentary solid state emitters are included that emit at different wavelengths of light than the UV emitter and the conversion material. The lamp emits a white light combination of light emitted from the complimentary emitters and from the conversion material, with the white light having high efficacy and good color rendering. Other embodiments of white light emitting lamp according to the present invention comprises a solid state laser instead of a UV emitter. A high flux white emitting lamp embodiment according to the invention comprises a large area light emitting diode (LED) that emits light at a first wavelength spectrum and includes a conversion material. A plurality of complimentary solid state emitters surround the large area LED, with each emitter emitting light in a spectrum different from the large area LED and conversion material such that the lamp emits a balanced white light. Scattering particles can be included in each of the embodiments to scatter the light from the emitters, conversion material and complimentary emitters to provide a more uniform emission.
Owner:CREELED INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products