Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1816results about How to "Improve light output" patented technology

Electronic devices having a header and antiparallel connected light emitting diodes for producing light from AC current

A light engine comprises a pair of LED active elements mounted on a common header having first and second terminals. The first terminal is connected to the cathode of the first LED active element and the anode of the second LED active element, while the second terminal is connected to the anode of the first LED active element and the cathode of the second LED active element, thereby connecting the LEDs in an anti-parallel arrangement. A light engine having a single insulating or semi-insulating substrate having formed thereon plural LED active elements with associated p- and n-type contacts forming cathode and anode contacts, respectively, for each LED active element is also provided. The LED active elements may be mounted in a flip-chip configuration on a header having a plurality of leads. The header may include a pair of leads adapted such that two LEDs may be flip-mounted thereon with the anode of the first LED and the cathode of the second LED contacting one lead, while the cathode of the first LED and the anode of the second LED contact the other lead. In addition, the header may be adapted to permit a substrate having multiple active elements to be mounted thereon.
Owner:IDEAL IND LIGHTING LLC

Providing an organic electroluminescent device having stacked electroluminescent units

A stacked organic electroluminescent device and a method of making such device is disclosed. The device comprises an anode, a cathode, at least two organic electroluminescent units disposed between the anode and the cathode, and a doped organic connector disposed between each adjacent organic electroluminescent unit wherein the organic electroluminescent unit comprises at least one organic hole-transporting layer and one organic electron-transporting layer. The doped organic connector comprises at least one n-type doped organic layer or one p-type doped organic layer, or combinations of layers thereof.
Owner:EASTMAN KODAK CO

Method and system for measuring and controlling an OLED display element for improved lifetime and light output

A method of optimizing lifetime of an OLED display element and an OLED display element with optimized lifetime for possible use in a tiled display, while maintaining light output are described. It compensates an OLED operating parameter such as supply voltage and / or on-time of the operating current based on at least one environmental factor which affects aging and on at least one operating factor which is indicative of aging, e.g. by determining the brightness of an OLED display element. To optimize the light output, pre-charge of the aged OLED display elements can be optimized. The knowledge of the working temperature of OLED tiles may be used to regulate the cooling and thus the working temperature, thus improving the lifetime of the display. Furthermore the intensity and contrast of the display illumination may be set within predefined limits to reduce the aging.
Owner:BARCO NV

High efficiency solid-state light source and methods of use and manufacture

A high-intensity light source is formed by a micro array of a semiconductor light source such as a LEDs, laser diodes, or VCSEL placed densely on a liquid or gas cooled thermally conductive substrate. The semiconductor devices are typically attached by a joining process to electrically conductive patterns on the substrate, and driven by a microprocessor controlled power supply. An optic element is placed over the micro array to achieve improved directionality, intensity, and / or spectral purity of the output beam. The light module may be used for such processes as, for example, fluorescence, inspection and measurement, photopolymerzation, ionization, sterilization, debris removal, and other photochemical processes.
Owner:SILICON VALLEY BANK

Semiconductor structure comprising active zones

InactiveUS7692202B2Improve light yieldSimplify manufacturing methodSolid-state devicesSemiconductor devicesMulti wavelengthTunnel diode
A semiconductor structure with active zones, such as light diodes or photodiodes, including a substrate (SUB) with at least two active zones (AZ1-AZn), each of which emits or absorbs a radiation of differing wavelength. According to the invention, a multi-wavelength diode may be achieved, in which a first (lower) active zone (AZ1) is grown on a surface of the substrate (SUB), with one or several further active zones (AZ1-Azn) epitaxially grown one on the other and the active zones (AZ1-AZn) are serially connected from the lower active zone (AZ1) to an upper active zone (AZn), by means of tunnel diodes (TD1-TDn), serving as low-impedance resistors.
Owner:AZUR SPACE SOLAR POWER

Light emitting sign and display surface therefor

A light emitting sign comprising a light emitting display surface including at least one phosphor, and at least one radiation source configured to irradiate the display surface with excitation energy such that the phosphor emits light of a selected color. The sign further comprises a filter which is substantially transparent to light emitted by the display surface, filtering other colors of light. The display surface may be configured into a shape of a character, a symbol, or a device. Alternatively, a mask having at least one window substantially transparent to the emitted light and / or at least one light blocking region may be provided in which the window and / or light blocking region define a character, a symbol, or a device.
Owner:INTEMATIX

Oled device having improved light output

An organic light-emitting diode (OLED) device, comprising: a substrate; an OLED comprising first and second electrodes and one or more layers of organic light-emitting material formed between the electrodes, wherein at least one electrode comprises a transparent electrode, the transparent electrode and layer(s) of organic light-emitting material having a first refractive index range; and an encapsulating cover; wherein at least one of the substrate or cover comprises a transparent substrate or cover having a second refractive index and through which light from the OLED is emitted; and further comprising a light scattering layer located between the substrate and cover, and a transparent low-index element having a third refractive index lower than each of the first refractive index range and second refractive index and located between the scattering layer and the transparent substrate or cover.
Owner:GLOBAL OLED TECH

Light emitting mesa structures with high aspect ratio and near-parabolic sidewalls

An array of highly efficient micro-LEDs where each micro-LED is an integrated diode structure in a mesa, in which the mesa shape and the light-emitting region are chosen for optimum efficiency. A single one of the micro-LEDs includes, on a substrate and a semiconductor layer, a mesa, a light emitting layer, and an electrical contact. The micro-LEDs in this device have a very high EE because of their shape. Light is generated within the mesa, which is shaped to enhance the escape probability of the light. Very high EEs are achieved, particularly with a near parabolic mesa that has a high aspect ratio. The top of the mesa is truncated above the light-emitted layer (LEL), providing a flat surface for the electronic contact on the top of the semiconductor mesa. It has been found that the efficiency is high, provided the top contact has a good reflectivity value. Also, it has been found that efficiency is particularly high if the contact occupies an area of less than 16% of the truncated top mesa surface area. This feature also helps to achieve a more directional beam in the case of the device being an LED.
Owner:META PLATFORMS TECH LLC

Reflective LCD projection system using wide-angle Cartesian polarizing beam splitter and color separation and recombination prisms

An optical imaging system including an illumination system, a Cartesian PBS, and a prism assembly. The illumination system provides a beam of light, the illumination system having an f / # less than or equal to 2.5. The Cartesian polarizing beam-splitter has a first tilt axis, oriented to receive the beam of light. A first polarized beam of light having one polarization direction is folded by the Cartesian polarizing beam splitter and a second polarized beam of light having a second polarization direction is transmitted by the Cartesian polarizing beam splitter. The Cartesian polarizing beam splitter nominally polarizes the beam of light with respect to the Cartesian beam-splitter to yield the first polarized beam in the first polarization direction. The color separation and recombination prism is optically aligned to receive the first polarized beam. The prism has a second tilt axis, a plurality of color separating surfaces, and a plurality of exit surfaces. The second tilt axis maybe oriented perpendicularly to the first tilt axis of the Cartesian polarizing beam-splitter so that the polarized beam is nominally polarization rotated into the second polarization direction with respect to the color separating surfaces and a respective beam of colored light exits through each of the exit surfaces. Each imager is placed at one of the exit surface of the color separating and recombining prism to receive one of the respective beams of colored light, wherein each imager can separately modulate the polarization state of the beam of colored light.
Owner:3M INNOVATIVE PROPERTIES CO

Lightemitting device and method of manufacturing the same

A light emitting apparatus includes a metallic substrate having at least one recess on the surface and at least one projection opposing the recess on the back surface thereof, a light emitting element mounted in the recess of the metallic substrate, the light emitting element having a pair of positive and negative electrodes formed on one side thereof, and electrically conductive members formed via an insulating member on the surface of the metallic substrate, the electrically conductive members being electrically connected with the pair of positive and negative electrodes of the light emitting element.
Owner:NICHIA CORP

Light emitting device

An inexpensive light emitting device and inexpensive electric equipment are provided. A substrate on which a semiconductor element or a light emitting element is formed and a color filter are manufactured by separate manufacturing processes, and they are bonded to each other to complete the light emitting device. Thus, the yield of the light emitting device is improved and the manufacture period is shortened.
Owner:SEMICON ENERGY LAB CO LTD

LED device having improved light output

A light-emitting microcavity diode device includes a reflective electrode and a semi-transparent electrode, formed over a substrate, with an unpatterned light-emitting layer formed between the reflective electrode and the semi-transparent electrode. The reflective electrode, semi-transparent electrode, and unpatterned light-emitting layer form an optical cavity. Either the reflective or semi-transparent electrode is patterned to form independently-controllable, light-emitting sub-pixels. At least one, and fewer than all, of the sub-pixels emit light through a color filter. A first sub-pixel emits light having a first primary color and a second sub-pixel emits a complementary colored light. The light emitted from the first and second sub-pixels changes at one or more different angles. The color of the combined light of the first and second sub-pixels changes less at the one or more different angles than the light from at least one of the first or second sub-pixels. A third sub-pixel emits light through a color filter of a second primary color, different from the first primary color.
Owner:GLOBAL OLED TECH

Non-uniform diffuser to scatter light into uniform emission pattern

A lighting device comprising a light source and a diffuser spaced from the light source. The lighting device further comprises a wavelength conversion material disposed between the light source and the diffuser and spaced from the light source and the diffuser, wherein the diffuser is shaped such that there are different distances between the diffuser and said conversion material at different emission angles. In other embodiments the diffuser includes areas with different diffusing characteristics. Some lamps are arranged to meet A19 and Energy Star lighting standards.
Owner:IDEAL IND LIGHTING LLC

Lighting system with high and improved extraction efficiency

In an epitaxial structure of a solid state lighting system, electrical current injection into the active layer is used to excite the photon emission. The present invention employs a unique waveguide layer in the epitaxial structure for trapping the light generated by the active layer in the fundamental waveguide mode. Multiple photonic crystal regions with different characteristics located either outside or inside one or more current injection regions extract photons from the waveguide layer(s). The present invention creates solid state lighting with high optical output and high power efficiency.
Owner:DICON FIBEROPTICS

Member for semiconductor light emitting device and method for manufacturing such member, and semiconductor light emitting device using such member

To provide novel semiconductor light-emitting device member superior in transparency, light resistance, and heat resistance and capable of sealing semiconductor light-emitting device and holding phosphor without generating cracks or peelings even after use for a long time, the member meets the following requirements: (1) comprising functional group forming hydrogen bond with hydroxyl group or oxygen in a metalloxane bond, on the surface of ceramic or metal, (2) maintenance rate of transmittance at 400 nm wavelength before and after left at 200° C. for 500 hours is between 80% to 110%, (3) no change is observed by visual inspection after irradiated with light having 380 nm to 500 nm wavelength, whose center wavelength is between 400 nm and 450 nm both inclusive, for 24 hours with 4500 W / m2 illumination intensity at 436 nm wavelength, and (4) refractive index at 550 nm wavelength is 1.45 or larger.
Owner:MITSUBISHI CHEM CORP

Luminescent light source and luminescent light source array

ActiveUS20060158899A1Division increaseNarrowing pitch interval of reflection areaMirrorsPoint-like light sourceLight reflectionLight emitting device
To provide a luminescent light source that can increase the number of divisions of a reflecting mirror without reducing pitch interval of reflection areas. A luminescent light source comprises a reflecting mirror for reflecting light, a mold unit arranged on a light reflection surface of the reflecting mirror, and light emitting devices of three luminescent devices of red, blue and green that are placed in the central part and output light to the mold unit. In the reflecting mirror, rectangular reflection areas are arranged vertically and horizontally in a grid.
Owner:ORMON CORP

Light emitting diode with direct view optic

An LED and light guide assembly has an LED with an output surface; a first power input lead electrically coupled to a first pole and having a first surface and a second surface; and a second power input lead electrically coupled to a second pole and having a first surface and a second surface. A unitary, molded light guide has an axially extending, light transmissive body with a light output window. An input window is formed with the unitary, molded light guide being aligned in a zero-gap relationship to capture substantially all the light emitted by the LED. A support is formed integral with the light guide and envelopes a portion of the first surface and the second surface of the first power input lead and the first surface and the second surface of the second power input lead to anchor the guide with respect to the power inputs.
Owner:OSRAM SYLVANIA INC

Light emitting device and method for manufacturing light emitting device

A light emitting device (100) includes a base member (101), electrically conductive members (102a, 102b) disposed on the base member (101), a light emitting element (104) mounted on the electrically conductive members (102a, 102b), an insulating filler (114) covering at least a portion of surfaces of the electrically conductive members (102a, 102b) where the light emitting element (104) is not mounted, and a light transmissive member (108) covering the light emitting element (104).
Owner:NICHIA CORP

Lighting Apparatus With Leds

A lighting apparatus with LED includes a metal-made main body 90; a plurality of LED chip units 1 each including an LED chip and a pair of lead terminals 42, 43 electrically connected to electrodes of the LED chip; and a dielectric layer 80 disposed between the main body 90 and each LED chip unit 1 for making electrical insulation therebetween as well as bond the same. The circuit board 20 is formed with a plurality of windows 23 through which the individual LED chip units 1 extend respectively with the lead terminals held in electrical contact with the circuit pattern of the circuit board at the circumference of the window, each of the LED chip units being thermally coupled at its bottom face with the main body 90 through the dielectric layer 80, and the heat generated in the LED chip is conducted to the main body through the dielectric layer without passing through the circuit board.
Owner:MATSUSHITA ELECTRIC WORKS LTD

Modular LED Lamp and Manufacturing Methods

A method for forming a light source includes receiving an LED light module having a plurality of LEDs on a silicon substrate coupled to a flexible printed circuit and bonding the LED light module directly to a heat-sink with a thermal adhesive A base module with LED driver circuits is inserted into an interior channel of the heat sink and contacts of the LED driver circuits are connected to the LED light module.
Owner:KORRUS INC

Illumination system and display device

A back lighting system for illuminating a display device comprises a light-emitting panel (1) and a light source (6) for coupling light into the light-emitting panel. The light source comprises a low-pressure discharge lamp (6; 7). The light source additionally comprises a plurality of LEDs (8, 8′, . . . ; 9, 9′, . . . ) for selectively setting the color temperature of the light emitted by the light source. Preferably, the LEDs increase the color temperature of the light emitted by the light source. Preferably, the light emitted by the back lighting system ranges from 6,000 to 10,500 K. Preferably, the LEDs are blue light emitting LEDs, each preferably having a luminous flux of at least 5 lm. The color point of an image to be displayed on a display screen of the display device is set by the back lighting system, thus enabling an optimum contrast to be achieved for the image to be displayed by the display device.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Light emitting system with high extraction efficency

In an epitaxial structure of a solid state lighting system, electrical current injection into the active layer is used to excite the photon emission. The present invention employs a unique waveguide layer in the epitaxial structure for trapping the light generated by the active layer in the fundamental waveguide mode. Multiple photonic crystal regions located either outside or inside one or more current injection regions extract photons from the waveguide layer(s). This novel design optimizes the interplay of electrical pumping, radiation and optical extraction to increase the optical output to several times that of conventional LEDs. A transparent and conductive ITO layer is added to the surface of an epitaxial structure to reduce the interface reflection in addition to functioning as a current spreading layer. The present invention creates solid state lighting with high optical output and high power efficiency.
Owner:DICON FIBEROPTICS

Fiber optic sight for firearms with nighttime capabilities

New and unique improvements of prior known fiber optic sights for firearms with day and night time capabilities are disclosed that comprise (A) a sight base, (B) a fiber optic rod mounted in said base having an angle cut at the distal end which is positioned on the underside of the rod, and (C) an artificial light insert that is positioned in a cavity in the fiber optic rod. The cavity is sealed with a fiber optic rod plug and epoxied using an optically clear epoxy. The sight provides increased light output, co-located day and night sight views with increased illumination during the day, and uses a low power tritium insert for night time use. At night the sight achieves a transition from a bright ring during the day to a small central dot at night while maintaining the same color light for both.
Owner:WILSONS GUN SHOP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products