Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

132 results about "Tunnel diode" patented technology

A tunnel diode or Esaki diode is a type of semiconductor diode that has negative resistance due to the quantum mechanical effect called tunneling. It was invented in August 1957 by Leo Esaki, Yuriko Kurose, and Takashi Suzuki when they were working at Tokyo Tsushin Kogyo, now known as Sony. In 1973, Esaki received the Nobel Prize in Physics, jointly with Brian Josephson, for discovering the electron tunneling effect used in these diodes. Robert Noyce independently devised the idea of a tunnel diode while working for William Shockley, but was discouraged from pursuing it. Tunnel diodes were first manufactured by Sony in 1957, followed by General Electric and other companies from about 1960, and are still made in low volume today.

Nanoscale wires and related devices

The present invention relates generally to sub-microelectronic circuitry, and more particularly to nanometer-scale articles, including nanoscale wires which can be selectively doped at various locations and at various levels. In some cases, the articles may be single crystals. The nanoscale wires can be doped, for example, differentially along their length, or radially, and either in terms of identity of dopant, concentration of dopant, or both. This may be used to provide both n-type and p-type conductivity in a single item, or in different items in close proximity to each other, such as in a crossbar array. The fabrication and growth of such articles is described, and the arrangement of such articles to fabricate electronic, optoelectronic, or spintronic devices and components. For example, semiconductor materials can be doped to form n-type and p-type semiconductor regions for making a variety of devices such as field effect transistors, bipolar transistors, complementary inverters, tunnel diodes, light emitting diodes, sensors, and the like.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

Integrated resonant tunneling diode based antenna

An antenna comprising a plurality of negative resistance devices and a method for making same comprising employing a removable standoff layer to form the gap between the microstrip antenna metal and the bottom contact layer.
Owner:SANDIA

Antenna devices

An antenna device is provided with a first connecting electrode, a first tunnel diode, a first antenna member and a fixed electrode. The first connecting electrode is configured to be connected to a fixed potential via a load. The first tunnel diode has a pair of electrodes. One of the electrodes of the first tunnel diode is connected to the first connecting electrode, and the other electrode of the first tunnel diode is connected to the first antenna member. The first antenna member has a conductive property and includes a first portion and a second portion. The first portion of the first antenna member is connected to the other electrode of the first tunnel diode. The fixed electrode is connected to the second portion of the first antenna member. The fixed electrode is configured to be connected to the fixed potential.
Owner:TOYOTA CENT RES & DEV LAB INC +1

Closely spaced electrodes with a uniform gap

An improved design for maintaining separation between electrodes in tunneling, diode, thermionic, and other devices is disclosed. At least one electrode is made from flexible material. A magnetic field is present to combine with the current flowing in the flexible electrode and generate a force that counterbalances the electrostatic force between the electrodes. The balancing of forces allows the separation and parallelism between the electrodes to be maintained at a very small spacing without requiring the use of multiple control systems, actuators, or other manipulating means, or spacers. The shape of one or both electrodes is designed to maintain a constant separation over the entire overlapping area of the electrodes. The end result is an electronic device that maintains two closely spaced parallel electrodes in stable equilibrium with a uniform gap therebetween over a large area in a simple configuration for simplified manufacturability and use to convert heat to electricity or electricity to cooling.
Owner:TEMPRONICS INC

Tunable optical metamaterial

A tunable metamaterial has a two dimensional array of resonant annular ring elements; and a plurality of voltage controllable electrical tuning elements disposed in or adjacent openings in each of said ring elements, each of said voltage controllable electrical tuning element ohmically contacting portions of only one of said ring elements. The voltage controllable electrical tuning elements may comprise highly doped semiconductor tunnel diodes, or the charge accumulation layer at the semiconductor / insulator interface of a metal-insulator-semiconductor structure, or nanoelectromechanical (NEMs) capacitors. The tunable metamaterial may be used, for example, in an optical beam steering device using the aforementioned tunable optical metamaterial in which a free-space optical beam is coupled into a receiving portion of a plane of the optical metamaterial and is steered out of a transmitter portion of the plane of the optical metamaterial in controllable azimuthal and elevational directions. The tunable metamaterial additionally has other applications.
Owner:HRL LAB

Tunneling gap diodes

The present invention discloses a tunneling diode having a band gap material as the collector. This increases the tunneling of electrons having greater energy than the Fermi level from emitter to collector, leading to an increase in the efficiency of heat pumping or power generation by the diode. In a further embodiment the collector comprises a semiconductor on which a layer of band gap material is deposited. This approach also reduces back tunneling of electrons from collector to emitter.
Owner:BOREALIS TECH LTD

Sn-Ge-As alloy as well as preparation method and use thereof

The invention provides a tin-germanium-arsenic alloy material, a method for preparing the same and application thereof. The alloy material consists of the following components in weight percentage: 0.05 to 5 percent of Ge, 1 to 10 percent of As, and the balance being Sn. The preparation method comprises the following steps: in the range of the weight percentage, the high-purity tin, germanium and arsenic materials are weighed up; according to the order of arsenic, germanium and tin, the materials are placed in a quartz crucible, and the quartz crucible is placed in a high pressure reaction kettle; the reaction kettle is pumped vacuum and filled with argon, and the temperature and pressure of the reaction kettle are controlled to melt the tin and the germanium and make arsenic vapor enter the inner part of the tin-germanium melt mass to form an intermediate alloy; the intermediate alloy is cooled down to obtain tin-germanium-arsenic intermediate alloy ingot; and according to the weight percentage, the obtained intermediate alloy ingot and the remained tin and germanium are melted together and cast to obtain the tin-germanium-arsenic alloy material. The tin-germanium-arsenic alloy material is the basic alloy material for preparing high-quality tunnel diode, in which the tin-germanium-arsenic alloy material plays a role of an electrode electrodes, transforms P<+> to N<+> to form N<+>P<+> and a narrow space charge area and can be used to prepare vaporization plating materials as well as sputtering target materials.
Owner:BEIJING INST OF NONFERROUS METALS & RARE EARTH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products