Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1626 results about "Reverse current" patented technology

Automatic, Highly Reliable, Fully Redundant Electronic Circuit Breaker That Reduces or Prevents Short-Circuit Overcurrent

A programmable power (PPSE) switching element including a front power transistor, a main switching transistor, and at least one reverse current blocking transistor in series, a gate of each of which is connected to a gate driver; an inductor and a shunt resistor connected in series with the transistors; a charge storage capacitor connected between ground and a junction located between the inductor and the shunt resistor; a high-speed NPN transistor, a collector of which is connected to the front power transistor and an emitter of which is connected to an output of the main switching transistor via the shunt resistor; a current measurement element in parallel to the shunt resistor; a voltage amplifier; and a high-speed MCU.
Owner:REDLER TECH LTD

Active rectifier and wireless power receiving apparatus using the same that can reduce reverse current leakage

An active rectifier and a wireless power reception apparatus using the same are disclosed herein. The active rectifier includes first and fourth switches, second and third switches, and a synchronization control unit. The first and fourth switches are turned on while the voltage of an alternating current (AC) input is negative, and apply the current of the AC input to a rectifying capacitor. The second and third switches are turned on while a voltage of the AC input is positive, and apply the current of the AC input to the rectifying capacitor. The synchronization control unit compensates for the delay time of the comparator for detecting zero-crossing of the AC input so as to switch the first to fourth switches.
Owner:SKAI CHIPS

Novel Solar Power Circuits

Particular embodiments of the inventive technology disclosed herein seek to reduce or eliminate the risk of damage to components of photovoltaic power circuits such as solar arrays. Aspects of the inventive technology, in embodiments, utilize diode to prevent reverse current flow in the event of application of a voltage to a power supply string which would otherwise effect such flow. Prevention of such reverse current flow may preclude voltages that would otherwise damage reverse current sensitive devices such as switches that may form part of a voltage limiting DC to DC converter.
Owner:AMPT

Digital multilevel memory system having multistage autozero sensing

A digital multibit non-volatile memory integrated system includes autozero multistage sensing. One stage may provide local sensing with autozero. Another stage may provide global sensing with autozero. A twisted bitline may be used for array arrangement. Segment reference may be used for each segment. The system may read data cells using a current sensing one or two step binary search. The system may use inverse voltage mode or inverse current mode sensing. The system may use no current multilevel sensing. The system may use memory cell replica sensing. The system may use dynamic sensing. The system may use built-in byte redundancy. Sense amplifiers capable of sub-volt (<<1V) sensing are described.
Owner:SILICON STORAGE TECHNOLOGY

Step-down constant-current transformer

A step-down constant-current transformer including a controllable switch downstream from the one input and connected in series to a choke, a capacitor connected in parallel at the output, and upstream from the choke, a second controllable switch in parallel. Both controlled switches are MOSFET transistors. A control unit, in particular a pulse-width control unit, is provided for the MOSFET transistors. The voltage across the parallel-connected MOSFET transistor is monitored to determine whether a reverse current, i.e., a current flowing through the choke from the output in the direction of the input of the constant-current transformer, or an electric potential at the center tap of the half-bridge formed by the two MOSFET transistors is detected. For this purpose, a comparator and an AND circuit are provided, which, in the event of such a reverse current, block the parallel-connected MOSFET transistor to prevent the reverse current.
Owner:ROBERT BOSCH GMBH

Bootstrap Circuitry

This invention generally relates to a bootstrap circuit for a switch mode power supply, a controller for a switch mode voltage converter, a switch mode flyback converter comprising the bootstrap circuit, a switch mode forward converter comprising the bootstrap circuit, and a method of bootstrapping a switch mode power converter. The bootstrap circuit comprises: a current bleed impedance (Rht1) to bleed current from an input power supply (VH+); circuitry to deliver current from the input power supply (VH+) via the current bleed impedance (Rht1) to the base of a power switch (Q1) such that the power switch (Q1) is operable to amplify the current delivered from the internal power supply; a passive circuit (Dst) to provide the amplified current to a reservoir capacitor (Cdd); and the passive circuit element (Dst) further to substantially block reverse current flow from the supply input (Vdd) to the emitter of the power switch (Q1).
Owner:CAMBRIDGE SEMICONDUCTOR LIMITED

Unidirectional mosfet and applications thereof

Owing to the property of bidirectional conduction under the saturation mode, synchronous rectifiers in conventional power converters usually suffer from a reverse current under light loads or a shoot-through current under heavy loads. The reverse current may degrade the converter efficiency and the shoot-through current may damage synchronous rectifiers. The present invention discloses a unidirectional metal oxide semiconductor field effect transistor (UMOS), which comprises a metal oxide semiconductor field effect transistor (MOS), a current detection circuit and a fast turn-off circuit. The current detection circuit detects the direction of the current flowing through the MOS. When a forward current is detected, the fast turn-off circuit is disabled and the channel of the MOS can be formed. When a reverse current is detected, the fast turn-off circuit is enabled and the channel of the MOS cannot be formed. This UMOS can be applied, but not limited, to synchronous rectifiers to detect the occurrence of a reverse current or a shoot-through current and fast turn off the channel of the MOSFET.
Owner:GLACIALTECH +1

LED drive circuit, LED lighting device, and backlight

To realize an LED drive circuit capable of feeding equal currents to parallel-connected LED circuits with a simple arrangement, there are provided a current source generating a temporally altering current and a first smoothing capacitor and a second smoothing capacitor, and there are also provided: a first LED circuit, containing one LED or series-connected LEDs, which is connected in parallel with the first smoothing capacitor; and a second LED circuit, containing one LED or series-connected LEDs, which is connected in parallel with the second smoothing capacitor, the drive circuit comprising: a current-dividing coil containing two coils coupled at a tap so that the current generated in the current source flows into the tap; a first reverse current blocking diode connected between an end of the current-dividing coil and an electrode of the first smoothing capacitor; and a second reverse current blocking diode connected between another end of the current-dividing coil and an electrode of the second smoothing capacitor.
Owner:SHARP KK

Schottky diode having overcurrent protection and low reverse current

ActiveUS6861723B2Good resistance to overcurrentsLower forward voltageTransistorReverse currentEngineering
The invention relates to a Schottky diode in which p-doped regions (4, 5) are incorporated in the Schottky contact area. At least one (5) of these regions (4, 5) has a greater minimum extent, in order to initiate a starting current.
Owner:INFINEON TECH AG

Photovoltaic Panel Circuitry

Circuits integrated or integrable with a photovoltaic panel to provide built-in functionality to the photovoltaic panel including safety features such as arc detection and elimination, ground fault detection and elimination, reverse current protection, monitoring of the performance of the photovoltaic panel, transmission of the monitored parameters and theft prevention of the photovoltaic panel. The circuits may avoid power conversion, for instance DC / DC power conversion, may avoid performing maximum power tracking to include a minimum number of components and thereby increase overall reliability.
Owner:SOLAREDGE TECH LTD

Schottky barrier diode and method of making the same

A power Schottky rectifier device having a plurality of first trenches filled in with an un-doped polycrystalline silicon layer and each first trenches also has a p-region beneath the bottom of said first trenches to block out reverse current while a reverse biased is applied and to reduce minority carrier while forward biased is applied. Thus, the power Schottky rectifier device can provide first fast switch speed. The power Schottky rectifier device is formed with termination region at an outer portion of the substrate. The manufacture method is also provided.
Owner:WU SHYE LIN +1

Series diode thermally assisted MRAM

An information storage device is provided. The information storage device may be a magnetic random access memory (MRAM) device including a resistive cross point array of spin dependent tunneling (SDT) junctions or magnetic memory elements, with word lines extending along rows of the SDT junctions and bit lines extending along the columns of the SDT junctions. The present design includes a plurality of heating elements connected in series with associated magnetic memory elements, each heating element comprising a diode. Voltage applied to a magnetic memory element and associated heating element causes reverse current to flow through the diode, thereby producing heat from the diode and heating the magnetic memory element, thereby facilitating the write function of the device.
Owner:SAMSUNG ELECTRONICS CO LTD

Reverse current stopping circuit of synchronous rectification type DC-DC Converter

ActiveUS20090295350A1Offset voltage can be increased and decreasedEfficient power electronics conversionDc-dc conversionDc dc converterDetector circuits
A reverse current stopping circuit includes a synchronous rectification device, a comparator for detecting a reverse current of an inductor, the synchronous rectification device being turned off when the reverse current is detected by the comparator, a reverse current detector circuit for detecting a switching terminal voltage after the synchronous rectification device is turned off, thereby determining a value of the inductor current to decide whether the inductor current is flowing in a reverse direction or a forward direction, and a memory unit for receiving a predetermined output signal from the reverse current detector circuit in accordance with a result of the reverse current detector circuit, and outputting a control signal for an offset voltage in accordance with the predetermined output signal. The offset voltage is changed in accordance with the control signal so as to adjust the inductor current to zero when the synchronous rectification device is turned off.
Owner:FUJI ELECTRIC CO LTD

Multistage autozero sensing for a multilevel non-volatile memory integrated circuit system

A digital multibit non-volatile memory integrated system includes autozero multistage sensing. One stage may provide local sensing with autozero. Another stage may provide global sensing with autozero. A twisted bitline may be used for array arrangement. Segment reference may be used for each segment. The system may read data cells using a current sensing one or two step binary search. The system may use inverse voltage mode or inverse current mode sensing. The system may use no current multilevel sensing. The system may use memory cell replica sensing. The system may use dynamic sensing. The system may use built-in byte redundancy. Sense amplifiers capable of sub-volt (<<1V) sensing are described.
Owner:SILICON STORAGE TECHNOLOGY

Electronic component for power supply and a power supply device

This invention provides a semiconductor integrated circuit for drive and a module for building a synchronous rectifier type switching regulator that is able to correctly detect and prevent a reverse current flowing through a coil (inductance element) during light load using a comparator and has a good power efficiency. In a synchronous rectifier type switching regulator including a reverse current detection circuit that is able to detect a state in which a reverse current flows through the inductance element (coil) and a reverse current prevention function, a switching element for synchronous rectification is formed by a plurality of parallel transistors and the transistors are controlled so that a part of them are not driven during light load.
Owner:RENESAS ELECTRONICS CORP

High efficiency charge pump with prevention from reverse current

First and second clocks are applied to first and second capacitors, respectively. First and second former-stage clocks are applied to first and second former-stage capacitors, respectively. A first switch couples the second former-stage capacitor with the first capacitor. A second switch couples the first former-stage capacitor with the second capacitor. A first reverse current preventing circuit couples a control electrode of the first switch alternately with the second capacitor and the second former-stage capacitor. A second reverse current preventing circuit couples a control electrode of the second switch alternately with the first capacitor and the first former-stage capacitor. Falling edges of the first and second clocks occur earlier than falling edges of the first and second former-stage clocks, respectively. Rising edges of the first and second former-stage clocks occur earlier than rising edges of the first and second clocks, respectively.
Owner:GLOBAL MIXED MODE TECH

Reduced common voltage in a DC matrix converter

InactiveUS6166930AReducing common mode output voltageReduce size of magneticAC motor controlElectric motor controlMatrix convertersReverse current
A DC matrix converter having six forward current conducting power switches and six reverse current conducting power switches has the on time duration of each power switch within each pulse width modulation period controlled by relationships between d, q components of a modulation index determined by the ratio of a voltage command to the instantaneous voltage of the AC mains expressed in stationary d, q coordinates, the selection of which is made based on inequalities between the AC mains voltage components expressed in dq coordinates, and relationships of the AC main voltage components expressed in d, q coordinates. Zero vectors are related to the one AC main having lower line-to-neutral voltage than the other AC mains, using relationships between the instantaneous AC mains voltage in d, q coordinates.
Owner:SUBAIR +1

String and system employing direct current electrical generating modules and a number of string protectors

A string includes direct current electrical generating modules electrically connected in series to form a first end and a remote second end. A power line is electrically connected to one DC EGM at the first end. A return line is electrically connected to another DC EGM at the remote second end. A first string protector is in the power line of the string, and a second SP is in the return line of the string at the remote second end. One of the first and second SPs includes a number of an over current protector, an arc fault protector, a reverse current protector and a ground fault protector. The other one of the first and second SPs includes a number of an over current protector, an arc fault protector, a reverse current protector, a ground fault protector, and a remotely controlled switch in series with the power or return lines.
Owner:EATON CORP

Electroplating of metals using pulsed reverse current for control of hydrogen evolution

InactiveUS20010054557A1ElectrolysisChromium coating
Excessive evolution of hydrogen in electrolytic deposition of metals on a cathode substrate can be controlled by using a pulsed reverse current. Reverse current pulses interposed between the forward current pulses consume at least some of the nascent hydrogen and prevent the local pH at the cathode surface from becoming excessively alkaline. Control of hydroxide ion concentration by pulsed reverse current alleviates problems caused by reaction of metal-bearing-ions with hydroxide ions generated near the cathode by evolution of hydrogen. The method is useful in depositing functional chromium coatings on electrically conductive substrates from plating baths comprising aqueous solutions of trivalent chromium salts. In such a method the current comprises forward pulses having a duty cycle of from about 50% to about 90% and reverse pulses having a duty cycle of from about 5% to about 30%, and a frequency of from about 5 Hz to about 700 Hz.
Owner:FARADAY TECH INC

Diverse band gap energy level semiconductor device

InactiveUS7038248B2Increasing forward-to-reverse current ratioSemiconductor/solid-state device detailsSolid-state devicesReverse currentMemory circuits
Hetero-structure semiconductor devices having first and second-type semiconductor junctions are disclosed. The hetero-structures are incorporated into pillar and rail-stack memory circuits improving the forward-to-reverse current ratios thereof.
Owner:SANDISK TECH LLC

LED drive circuit, LED lighting device, and backlight

To realize an LED drive circuit capable of feeding equal currents to parallel-connected LED circuits with a simple arrangement, there are provided a current source generating a temporally altering current and a first smoothing capacitor and a second smoothing capacitor, and there are also provided: a first LED circuit, containing one LED or series-connected LEDs, which is connected in parallel with the first smoothing capacitor; and a second LED circuit, containing one LED or series-connected LEDs, which is connected in parallel with the second smoothing capacitor, the drive circuit comprising: a current-dividing coil containing two coils coupled at a tap so that the current generated in the current source flows into the tap; a first reverse current blocking diode connected between an end of the current-dividing coil and an electrode of the first smoothing capacitor; and a second reverse current blocking diode connected between another end of the current-dividing coil and an electrode of the second smoothing capacitor.
Owner:SHARP KK

Level shift circuit

In a level shift circuit, the threshold voltage of N-type high-voltage transistors, to whose gates the voltage of a low-voltage supply VDD is applied, is set low. An input signal IN powered by the low-voltage supply VDD is input to the gate of an N-type transistor by way of an inverter. Therefore, even if the potentials at nodes W3 and W4 exceed the voltage of the low-voltage supply VDD, reverse current flow from the nodes W3 and W4 via parasitic diodes within the inverters into the low-voltage supply VDD is prevented. A protection circuit, composed of N-type transistor whose respective gates are fixed to the low-voltage supply VDD, is disposed between the two N-type high-voltage transistors N5, N6 and two N-type low-voltage transistors N1, N2 for receiving the complementary signals IN and XIN, thereby preventing the breakdown of those N-type complementary-signal-receiving transistors.
Owner:PANASONIC CORP

Step down switching regulator with the substrate of the switching transistor selectively connected to either its drain or source

A switching regulator is disclosed that is able to prevent reverse direction current flow without using a dedicated diode even when a PMOS transistor is used as a switching transistor of a step-down switching regulator. A selection circuit is provided to control connection of the substrate gate of the switching transistor, and a control circuit controls the selection circuit to connect the substrate gate to the drain of the switching transistor when the voltage on an input terminal of the switching regulator is less than or equal to the voltage on the output terminal of the switching regulator, and connect the substrate gate to the source of the switching transistor when the voltage on the input terminal is greater than the voltage on the output terminal.
Owner:RICOH KK

Method and apparatus for propulsion and power generation using spinning electrodynamic tethers

The present invention improves the orbital maneuvering and power generation capabilities of a system of a satellite(s) connected with a conducting tether(s) by spinning the system about its mass center at an angular rate which is relatively high compared to the average orbital rate. An improvement in tether performance is achieved because at many times during rotation the tether is positioned at much better angles with the magnetic field and significantly higher currents are driven through the tether without destabilizing the system. The current can flow either in the direction of the EMF induced in the tether, or in the reverse direction, depending on the tether orientation with respect to the magnetic field and the mission goals. The reverse current is driven by the onboard power sources. Spinning electrodynamic tether systems can also be lighter and simpler in design and more flexible in operation.
Owner:STAR TECH & RES

Zero voltage switch method for synchronous rectifier and inverter

The zero voltage switch (ZVS) method for the synchronous rectifiers and inverter. The ZVS method for synchronous rectifier, in which the rectifier diode is replaced by a bi-directional-current one directional-voltage blocking capability switch, by allowing and terminating current flow in a reverse direction, achieves zero voltage turn-on on both inverter and rectifier switches. The ZVS method of the present invention includes: increasing an inductor current to a current upper limit with a first switch module active; decreasing the inductor current with the first switch module open and a second switch module passive; decreasing the inductor current with a second switch module active; turning the second switch module open when the inductor current turns negative; increasing the inductor current from a current lower limit with the first switch module passive; and increasing the inductor current with the first switch module active with zero voltage.
Owner:KUAN KAN SHENG

Switching power supply circuit

A switching power supply circuit is disclosed which can achieve a high power conversion efficiency and besides achieve reduction of the circuit scale and the cost by simplification in circuit configuration. The switching power supply circuit includes a synchronous rectification circuit of the winding voltage detection system on the secondary side of a resonance converter. The coupling coefficient of an insulating converter transformer or the induced voltage level per one turn of the secondary winding is set so that the magnetic flux density of the insulating converter transformer may be lower than a fixed level thereby to maintain the secondary side rectification current in a continuous mode even in a heavy load condition. An inductor is inserted in series in a path along which rectification current is to be supplied to a secondary side smoothing capacitor so that reverse current appearing on the rectification current is suppressed by counter electromotive force generated in the inductor to further reduce the reactive power. A dc superposition characteristic of the inductor is set so that abnormal oscillation in a very light load condition (for example, 12.5 W or less) is prevented.
Owner:SONY CORP

Method of manufacturing a light emitting device and thin film forming apparatus

A method of manufacturing a light emitting device is provided in which satisfactory image display can be performed by the investigation and repair of short circuits in defect portions of light emitting elements. A backward direction electric current flows in the defect portions if a reverse bias voltage is applied to the light emitting elements having the defect portions. Emission of light which occurred from the backward direction electric current flow is measured by using an emission microscope, specifying the position of the defect portions, and short circuit locations can be repaired by irradiating a laser to the defect portions, turning them into insulators.
Owner:SEMICON ENERGY LAB CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products