Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

259results about How to "Lower forward voltage" patented technology

Semiconductor light emitting device

A Si substrate 1, a metal adhesion layer 2, a reflective metal film 3 comprising a multilayer of metallic material having a light reflectivity, a SiO2 film 4, an ohmic contact portion 5 provided at a predetermined position of the SiO2 film 4, a GaP layer 6 including a Mg-doped GaP layer 6A and a Zn-doped GaP layer 6B, a p-type GaInP interposed layer 7, a p-type AlGaInP cladding layer 8, an undoped MQW active layer 9, an n-type AlGaInP cladding layer 10, an n-type AlGaInP window layer 11, an n-type GaAs contact layer 12, a first electrode 13, and a second electrode 14 are formed. The ohmic contact portion 5 is distant from the light emitting part including the p-type AlGaInP cladding layer 8, the undoped MQW active layer 9 and the n-type AlGaInP cladding layer 10 by not less than 300 nm.
Owner:SUMITOMO CHEM CO LTD

High efficiency power conversion circuits

A composite high voltage schottky rectifier is revealed that provides a forward voltage slightly larger than a low voltage schottky rectifier combined with a high voltage breakdown capability. The composite rectifier can be formed from the combination of a low voltage schottky rectifier, a high voltage mosfet, and a few small passive components. A quarter bridge primary switching network similar in some ways to a half bridge primary switching network is revealed. The quarter bridge network consists of four switches with voltage stress equal to half the line voltage and the network applies one quarter of the line voltage to a primary magnetic circuit element network thereby reducing the number of primary winding turns required to one quarter by comparison to a common full bridge network. A synchronously switched buck post regulator is revealed for multi-output forward converters. The synchronously switched buck post regulator accomplishes precise independent load regulation for each output and reduced magnetics volume by using a coupled inductor with a common core for all outputs plus a second smaller inductor for each output except the highest voltage output. An improved capacitor coupled floating gate drive circuit is revealed that provides an effective drive mechanism for a floating or high side switch without the use of level shifting circuits or magnetic coupling. The capacitor coupled floating gate drive circuit is an improvement over prior art capacitor coupled floating gate drive circuits in that the new circuit uses a positive current feedback mechanism to reject slowly changing voltage variations that cause unintentional switch state changes in prior art capacitor coupled floating gate drive circuits.
Owner:TECHN WITTS

Gallium-containing light-emitting semiconductor device and method of fabrication

An LED comprising a light-generating semiconductor region having an active layer sandwiched between two confining layers of opposite conductivity types. A cathode is arranged centrally on one of the opposite major surfaces of the semiconductor region from which is emitted the light. An array of discrete gold regions are formed via transition metal regions on the other major surface of the semiconductor region at which is exposed one of the confining layers which is of n-type AlGaInP semiconductor material. The gold is thermally diffused into the confining layer via the transition metal regions at a temperature less than the eutectic point of gold and gallium, thereby creating an array of ohmic contact regions of alloyed or intermingled gold and gallium, which are less absorptive of light than their conventional counterparts, to a thickness of 20 to 1000 angstroms. After removing the transition metal regions and gold regions from the surface of the light-generating semiconductor region, a reflective layer of aluminum is formed so as to cover both the ohmic contact regions and the exposed surface portions of the AlGaInP confining layer. An electroconductive base-plate of doped silicon is then bonded to the reflective layer.
Owner:SANKEN ELECTRIC CO LTD

Schottky diode with high reverse-blocking performance and manufacturing method thereof

InactiveCN102354704AAvoid lowering effectAvoid reducing reverse leakage currentSemiconductor/solid-state device manufacturingSemiconductor devicesEffective potentialDot matrix
The invention provides a schottky diode with high reverse-blocking performance and a manufacturing method thereof. The schottky diode core is structurally characterized in that: a lightly doped epitaxial layer of a drift region is provided with a P-type structure region which is composed of a P-type ring and P-type dot matrixes uniformly spaced on the epitaxial layer in the P-type ring; the surface of the epitaxial layer in the P-type ring is provided with a schottky potential barrier contact metal layer; and the surface of the P-type structure region is in Ohm metal contact. When the schottky diode is in reverse application, a PN junction depletion region gradually spreads to a channel region along with the increase of the reverse voltage until the depletion region is communicated, and extends towards the substrate along with further increase of the reverse voltage to form an effective potential barrier in the channel region and effectively shield the schottky potential barrier region, thereby improving the reverse blocking ability that the reverse blocking voltage can reach 200 V or above; and moreover, the schottky diode also has good technical indexes such as reverse recovery time, reverse leakage current and the like, realizes low working loss of switches and prevents noise.
Owner:丹东安顺微电子有限公司

N-Type Group III Nitride Semiconductor Layer Stacked Structure

An object of the present invention provides an n-type Group III nitride semiconductor stacked layer structure of a low resistance having excellent flatness generating few cracks and pits in the uppermost surface. The inventive n-type Group III nitride semiconductor stacked layer structure comprises a first n-type layer which includes a layer containing n-type impurity atoms at a high concentration and a layer containing n-type impurity atoms at a low concentration, a second n-type layer containing n-type impurity atoms at an average concentration smaller than that of the first n-type layer, the second n-type layer neighboring the layer containing n-type impurity atoms at a low concentration in the first n-type layer.
Owner:TOYODA GOSEI CO LTD

Semiconductor light-emitting device and process for production thereof

ActiveUS20110049556A1Less generate heatLuminance intensity be not lowSemiconductor/solid-state device manufacturingSemiconductor devicesNanometreHigh luminance
The present invention provides a semiconductor light-emitting device capable of keeping high luminance intensity even if electric power increases, and hence the device is suitable for lighting instruments such as lights and lamps. This semiconductor device comprises a metal electrode layer provided with openings, and is so large in size that the electrode layer has, for example, an area of 1 mm2 or more. The openings have a mean diameter of 10 nm to 2 μm, and they penetrate through the metal electrode layer. That metal electrode layer can be produced by use of self-assembling of block copolymer or by nano-imprinting techniques.
Owner:KK TOSHIBA

Light emitting diode having electrode extensions for current spreading

An exemplary embodiment of the present invention discloses a light emitting diode including a substrate having a first edge and a second edge opposite to each other, a light emitting structure disposed on the substrate, the light emitting structure including a first semiconductor layer and a second semiconductor layer, a plurality of first electrode pads arranged on an upper surface of the first semiconductor layer, the first electrode pads arranged in a vicinity of the first edge, a plurality of second electrode pads arranged on the second semiconductor layer, the second electrode pads arranged in a vicinity of the second edge, a plurality of first extensions, each first extension extending from a first electrode pad, and a plurality of second extensions, each second extension extending from a second electrode pad. The first extensions include intrusion parts extending in a direction from the first edge to the second edge, wherein the intrusion parts are spaced apart from each other and not connecting with the second electrode pads. Further, the second extensions include intrusion parts extending in a direction from the second edge to the first edge, wherein the first extension intrusion parts each extend into a region between two of the second extension intrusion parts.
Owner:SEOUL VIOSYS CO LTD

Mains complementation controller for solar street lamp and control method of controller

The invention discloses a mains complementation controller for a solar street lamp. The controller comprises a solar cell panel, a charging module, a microprocessor, a constant-current output module, a switching power supply, a voltage detection module and a battery. The invention also discloses a control method of the controller. The controller is skillful and reasonable in structural design, when the electric quantity stored in the battery by the solar energy is insufficient, the controller is switched to a mains supply automatically in a seamless mode, the effect that the solar energy is used preferentially and the mains supply serves as a supplement can be effectively achieved, and charging and discharging can be controlled automatically according to different working parameters and states, so that the charging and the discharging are kept at the optimal states, the utilization efficiency of the solar energy is improved, the energy resources are effectively saved, the whole process is automatic, and the intelligent degree is high. The control method is simple in step, easy to implement, capable of supplying electricity by the battery and achieving seamless switching to the mains supply, effectively guaranteeing the sufficient utilization of solar energy resources, greatly prolonging the service life of the battery and reducing the maintenance cost and beneficial to popularization and application.
Owner:SICHUAN TAIYI NEW ENERGY DEV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products