Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2896 results about "Positive temperature" patented technology

Electrosurgical jaw structure for controlled energy delivery

A working end of a surgical instrument that carries first and second jaws for delivering energy to tissue. In a preferred embodiment, at least one jaw of the working end defines a tissue-engagement plane that contacts the targeted tissue. The cross-section of the engagement plane reveals that it defines a surface conductive portion that overlies a variably resistive matrix of a temperature-sensitive resistive material or a pressure-sensitive resistive material. An interior of the jaw carries a conductive material or electrode that is coupled to an Rf source and controller. In an exemplary embodiment, the variably resistive matrix can comprise a positive temperature coefficient (PTC) material, such as a ceramic, that is engineered to exhibit a dramatically increasing resistance (i.e., several orders of magnitude) above a specific temperature of the material. In use, the engagement plane will apply active Rf energy to captured tissue until the point in time that the variably resistive matrix is heated to its selected switching range. Thereafter, current flow from the conductive electrode through the engagement surface will be terminated due to the exponential increase in the resistance of variably resistive matrix to provide instant and automatic reduction of Rf energy application. Further, the variably resistive matrix can effectively function as a resistive electrode to thereafter conduct thermal energy to the engaged tissue volume. Thus, the jaw structure can automatically modulate the application of energy to tissue between active Rf heating and passive conductive heating of captured tissue to maintain a target temperature level.
Owner:ETHICON ENDO SURGERY INC

Jaw structure for electrosurgical instrument and method of use

An electrosurgical medical device and technique for creating thermal welds in engaged tissue that provides very high compressive forces. In one exemplary embodiment, at least one jaw of the instrument defines a tissue engagement plane carrying first and second surface portions that comprise (i) an electrically conductive material and (ii) a positive temperature coefficient (PTC) material having a selected increased resistance that differs at each selected increased temperature over a targeted treatment range. One type of PTC material is a doped ceramic that can be engineered to exhibit a selected positively sloped temperature-resistance curve over about 37° C. to 100° C. The 70° C. to 100° C. range can bracket a targeted “thermal treatment range” at which tissue welded can be accomplished. The engineered resistance of the PTC matrix at the upper end of the temperature range will terminate current flow through the matrix. In one mode of operation, the engagement plane cause ohmic heating within tissue from Rf energy delivery tissue PTC matrix is heated to exceed the treatment range. Thereafter, energy density in the engaged tissue will be modulated as the conductivity of the second portion hovers within the targeted treatment range to thereby provide optical tissue heating for purposes of tissue welding.
Owner:ETHICON ENDO SURGERY INC

Electrosurgical instrument and method of use

InactiveUS7083619B2Reduce conductancePrevent any substantial dehydrationSurgical instruments for heatingCoatingsMicron scaleElastomer
An electrosurgical medical device and method for creating thermal welds in engaged tissue. In one embodiment, at least one jaw of the instrument defines a tissue engagement plane carrying a conductive-resistive matrix of a conductively-doped non-conductive elastomer. The engagement surface portions thus can be described as a positive temperature coefficient material that has a unique selected decreased electrical conductance at each selected increased temperature thereof over a targeted treatment range. The conductive-resistive matrix can be engineered to bracket a targeted thermal treatment range, for example about 60° C. to 80° C., at which tissue welding can be accomplished. In one mode of operation, the engagement plane will automatically modulate and spatially localize ohmic heating within the engaged tissue from Rf energy application—across micron-scale portions of the engagement surface.
Owner:ETHICON ENDO SURGERY INC

Electrosurgical probe and method of use

An electrosurgical instrument that allows precise modulation of active Rf density in an engaged tissue volume. The working end of the instrument has a tissue-contacting surface of a conductive-resistive matrix that is variably resistive depending on its temperature. The matrix comprises a positive temperature coefficient (PTC) polymeric material hat exhibits very large increases in resistivity as any local portion increases beyond a selected temperature. In a method of use, the polymeric PTC material senses the temperature of engaged tissue in a manner akin to pixel-by-pixel sensing and thereby changes its resistance in a corresponding pixel-by-pixel manner. The instrument further carries cooling means to cause accelerated thermal relaxation of the PTC matrix during use to make the engagement surface highly responsive to temperature changes that in turn alter the matrix between being electrically conductive and electrically resistive.
Owner:ETHICON ENDO SURGERY INC

Electrosurgical instrument and method of use

An electrosurgical medical device and method for creating thermal welds in engaged tissue. In one embodiment, at least one jaw of the instrument defines a tissue engagement plane carrying a variable resistive body of a positive temperature coefficient material that has a selected decreased electrical conductance at each selected increased temperature thereof over a targeted treatment range. The variable resistive body can be engineered to bracket a targeted thermal treatment range, for example about 60° C. to 80° C., at which tissue welding can be accomplished. In one mode of operation, the engagement plane will automatically modulate and spatially localize ohmic heating within the engaged tissue from Rf energy application across micron-scale portions of the engagement surface. In another mode of operation, a variable resistive body will focus conductive heating in a selected portion of the engagement surface.
Owner:ETHICON ENDO SURGERY INC

Electrosurgical instrument and method of use

InactiveUS7112201B2Reduce conductancePrevent any substantial dehydrationSurgical instruments for heatingCoatingsMicron scaleElastomer
An electrosurgical medical device and method for creating thermal welds in engaged tissue. In one embodiment, at least one jaw of the instrument defines a tissue engagement plane carrying a conductive-resistive matrix of a conductively-doped non-conductive elastomer. The engagement surface portions thus can be described as a positive temperature coefficient material that has a unique selected decreased electrical conductance at each selected increased temperature thereof over a targeted treatment range. The conductive-resistive matrix can be engineered to bracket a targeted thermal treatment range, for example about 60° C. to 80° C., at which tissue welding can be accomplished. In one mode of operation, the engagement plane will automatically modulate and spatially localize ohmic heating within the engaged tissue from Rf energy application—across micron-scale portions of the engagement surface. In another mode of operation, a conductive-resistive matrix can induce a “wave” of Rf energy density to sweep across the tissue to thereby weld tissue.
Owner:ETHICON ENDO SURGERY INC

Surgical sealing surfaces and methods of use

Various embodiments provide compositions that exhibit positive temperature coefficient of resistance (PTCR) properties for use in thermal interactions with tissue—including thermal sensing and I2R current-limiting interactions. Embodiments also provide tissue-engaging surfaces having PTCR materials that provide very fast switching times between low resistance and high, current-limiting resistance. One embodiment provides a matrix for an electrosurgical energy delivery surface comprising a PTCR material and a heat exchange material disposed within an interior of the matrix. The PTCR material has a substantially conductive state and a substantially non-conductive state. The heat exchange material has a structure configured to have an omni-directional thermal diffusivity for exchanging heat with the PTCR material to cause rapid switching of the PTCR material between the conductive state and non-conductive state. Preferably, the structure comprises a graphite foam having an open cell configuration. The matrix can be carried by tissue contacting surfaces of various electrosurgical devices.
Owner:ETHICON ENDO SURGERY INC

Electrosurgical instrument and method of use

A particular embodiment of the invention provides an electrosurgical working end for performing high strength welding of tissue comprising a body having a tissue contacting energy delivery surface. The body includes pixel portions and non-pixel portions distributed within the tissue contacting surface. The pixel portions comprise a positive temperature coefficient of resistance (PTCR) material with at least one pixel portion configured to switch Rf current on and off in the at least one pixel portion responsive to tissue temperature adjacent the at least one pixel portion. The pixel portions can be configured to be coupled to an Rf current source such as an Rf generator. The pixelated energy delivery surfaces are capable of highly localized modulation of Rf energy application to the engaged tissue to create high strength tissue welds.
Owner:ETHICON ENDO SURGERY INC

Electrosurgical working end for controlled energy delivery

An electrosurgical working end for instant and automatic modulation of active Rf density in a targeted tissue volume. The working end of the probe of the present invention defines a tissue-engagement plane that is adapted to contact the targeted tissue. The cross-section energy delivery apparatus comprises (i) a conductive surface engagement plane for tissue contact, (ii) a substrate comprising a medial conductive matrix of a temperature sensitive resistive material; and (iii) an inner or core conductive material (electrode) that is coupled to an Rf source and controller. Of particular interest, the medial conductive matrix comprises a positive temperature coefficient (PTC) that exhibits very large increases in resistivity as it increases beyond a selected temperature, which is described as a switching range. The PTC material is selected and fabricated to define a switching range that approximates a particular thermally-mediated therapy. In a method of use, it can be understood that the engagement plane will apply active Rf energy to the engaged the tissue temperature elevates the medial PTC conductive layer to its switching range. Thereafter, Rf current flow from the core conductive to the engagement surface will be instantly modulated to maintain tissue temperature at the switching range. Moreover, the conductive matrix effectively functions as a resistive electrode to thereafter passively conduct thermal energy to the engaged tissue above its switching range. Thus, the working end can modulate the energy application to tissue between active Rf heating and passive conductive heating of the targeted tissue to maintain a targeted temperature level.
Owner:SURGRX

Electrosurgical instrument and method of use

A particular embodiment of the invention provides an electrosurgical working end for performing high strength welding of tissue comprising a body having a tissue contacting energy delivery surface. The body includes pixel portions and non-pixel portions distributed within the tissue contacting surface. The pixel portions comprise a positive temperature coefficient of resistance (PTCR) material with at least one pixel portion configured to switch Rf current on and off in the at least one pixel portion responsive to tissue temperature adjacent the at least one pixel portion. The pixel portions can be configured to be coupled to an Rf current source such as an Rf generator. The pixelated energy delivery surfaces are capable of highly localized modulation of Rf energy application to the engaged tissue to create high strength tissue welds.
Owner:ETHICON ENDO SURGERY INC

Semiconductor device having an internal voltage generating circuit

An internal power supply circuit produces an internal power supply voltage from an external power supply voltage. A voltage level control circuit controls a voltage level and a temperature characteristic of the internal power supply voltage generated by the internal power supply circuit. The internal power supply circuit produces the internal power supply voltage having a negative or zero temperature characteristic in a low temperature region and a positive temperature characteristic in a high temperature region. The voltage level control circuit includes a structure optimizing a capacitance value of a sense power supply line stabilizing capacitance for driving a sense amplifier circuit, a level converting circuit determining the lowest operable region of the external power supply voltage of the internal power supply circuit, or a structure forcedly operating the internal voltage down converter upon power-on. The internal power supply voltage at a desired level is stably produced with a small occupied area and a low current consumption.
Owner:MITSUBISHI ELECTRIC CORP

Electronic toy and teaching aid safety devices

A battery holder containing positive temperature coefficient (PTC) resetable fuse to electronically limit the maximum current that can be drawn from circuits built using reusable electronic component housings. A power supply with similar housing to reusable battery holders, also designed to limit maximum current and perform electrically equivalent to two or more battery holders. A reusable electronic housing with means for attaching any two leaded electronic component for insertion into quick connect assembly system. This housing also contains a positive temperature coefficient (PTC) resetable fuse to electroniclly limit the maximum current that can be sent through the attached two leaded component.
Owner:ELENCO ELECTRONICS LLC

Fast start-up low-voltage bandgap voltage reference circuit

A fast start-up low-voltage bandgap voltage reference circuit is disclosed. The bandgap voltage reference circuit includes: a first current generator, which is implemented by a self-bias unit and a current mirror for generating a first reference current with positive temperature coefficient; a second current generator, which is connected to a point with negative temperature coefficient in the first current generator to generate a second reference current with negative temperature coefficient; and a resistor for converting the first reference current and the second reference current into a low-voltage bandgap voltage independent of temperature. Because the bandgap voltage reference circuit of the invention uses the resistor to convert the first reference current and the second reference current into voltage, the circuit can provide low-voltage bandgap voltage.
Owner:REALTEK SEMICON CORP

Electrically-operated temperature-regulated scented wax warmer

An electrically operated scented wax holder that forms a receptacle for receiving unmelted blocks of wax which are heated to the melting point and thereafter maintained at a safe temperature by a temperature-regulated electrical heating element. The wax receptacle is removable mounted on a base section that houses a positive temperature coefficient (PTC) thermistor which has a transition temperature substantially higher than the melting point of the wax to insure that the wax is rapidly melted, but substantially below the temperature that would constitute a danger to a human who might touch the exterior surface of the warmer, or constitute a fire hazard. The heating element is preferably placed in thermal contact with a contact pad having high thermal conductivity that is in turn placed closely adjacent to the wax receptacle, thereby efficiently transferring heat from the electrically operated temperature regulated heating element to the wax in the receptacle. A switch is positioned to de-energize the heating element whenever the wax receptacle is removed from the base section, and a visible pilot light is illuminated whenever the heating element is energized.
Owner:HAAS RODNEY +1

Surgical sealing surfaces and methods of use

Various embodiments provide compositions that exhibit positive temperature coefficient of resistance (PTCR) properties for use in thermal interactions with tissue—including thermal sensing and I2R current-limiting interactions. Embodiments also provide tissue-engaging surfaces having PTCR materials that provide very fast switching times between low resistance and high, current-limiting resistance. One embodiment provides a matrix for an electrosurgical energy delivery surface comprising a PTCR material and a heat exchange material disposed within an interior of the matrix. The PTCR material has a substantially conductive state and a substantially non-conductive state. The heat exchange material has a structure configured to have an omni-directional thermal diffusivity for exchanging heat with the PTCR material to cause rapid switching of the PTCR material between the conductive state and non-conductive state. Preferably, the structure comprises a graphite foam having an open cell configuration. The matrix can be carried by tissue contacting surfaces of various electrosurgical devices.
Owner:ETHICON ENDO SURGERY INC

Energy-saving type integral single phase AC electric motor starting and protection device

An starter and protector for an energy-saving integral single-phase alternating current motor, belonging to cold compressor motor protecting equipment technology field, includes a housing, a cover, a motor protector mounted in the housing, a motor starter mounted on the housing, and a plug-in sheet mechanism composed of a L plug-in sheet, a N plug-in sheet and an earthing plug-in sheet. The motor starter includes a first pin, a second pin and a positive temperature coefficient thermistor, and is characterized in that the two ends of the positive temperature coefficient thermistor are equipped with a supporting wall separately, wherein the pair of the supporting walls being parallel with each other, a rostellum being arranged on the basic centered position of the upper side of each supporting wall, the two bottom sides of the positive temperature coefficient thermistor contacting the rostellum, and the two sides of the positive temperature coefficient thermistor holding with the first and the second pins separately. The invention has well energy-saving effect, and has substantial deflated volume, which being help to save the material for manufacturing the positive temperature coefficient thermistor.
Owner:CHANGSHU TIANYN ELECTROMECHANICAL

Preparation method of lithium ion battery pole piece containing PTC coating

The invention discloses a preparation method of a lithium ion battery pole piece containing a PTC (Positive Temperature Coefficient) coating. The pole piece prepared by the method is a multilayer coated pole piece. The method comprises the following steps: before coating slurry comprising an anode or a cathode active substance onto a current collector, coating the current collector with a precoated layer with the temperature sensitivity in advance, wherein the precoated layer with the temperature sensitivity comprises ingredients of a binding agent, a positive temperature material and a conductive agent; the weight ratio of the binding agent to the positive temperature material to the conductive agent is (2-8): (1-8): (0-7). The method provided by the invention is used for preparing the lithium ion battery pole piece containing the PTC coating; the battery using the pole piece has good safety characteristics against overcharge, short circuit, squeezing, needling and the like.
Owner:SHANGHAI AEROSPACE POWER TECH

Method and system for temperature compensation for memory cells with temperature-dependent behavior

The preferred embodiments described herein relate to a method and system for temperature compensation for memory cells with temperature-dependent behavior. In one preferred embodiment, at least one of a first temperature-dependent reference voltage comprising a negative temperature coefficient and a second temperature-dependent reference voltage comprising a positive temperature coefficient is generated. One of a wordline voltage and a bitline voltage is generated from one of the at least one of the first and second temperature-dependent reference voltages. The other of the wordline and bitline voltages is generated, and the wordline and bitline voltages are applied across a memory cell. Other methods and systems are disclosed for sensing a memory cell comprising temperature-dependent behavior, and each of the preferred embodiments can be used alone or in combination with one another.
Owner:SANDISK TECH LLC

Heater and image heating device mounted with heater

A heater of the present invention includes jointed heat generating resistors having a positive temperature characteristic of resistance and provided between a first conductive element and a second conductive element on a substrate in a longitudinal direction of the substrate, and a plurality of heating blocks provided in the longitudinal direction, each of which is a set of the first conductive element, the second conductive element, and the heat generating resistor, and power supplied to at least one of the plurality of heating blocks can be controlled independent of other heating blocks.
Owner:CANON KK

Sensors of conducting and insulating composites

The present invention provides a class of sensors prepared from at least a first material having a positive temperature coefficient of resistance and a second non-conductive or insulating material compositionally different than the first material that show an increase sensitivity detection limit for polar and non-polar analytes. The sensors have applications in the detection of analytes in the environment, associated with diseases and microorganisms.
Owner:CALIFORNIA INST OF TECH

Voltage reference generator circuit subtracting CTAT current from PTAT current

A voltage reference generator generates a stable reference voltage that is less than the bandgap voltage of silicon for power supply voltages less than 2V, yet provides sufficient voltage headroom to operate a current mirror. In one embodiment, the voltage reference generator has a power supply rejection ratio of at least 60 dB and has comparable noise performance as compared to traditional bandgap cirucits. These advantages are achieved by subtracting a current proportional to a complement of an absolute temperature from a current proportional to the absolute temperature to generate a voltage having a positive temperature coefficient, which is then added to a voltage that is a complement of the absolute temperature to achieve a voltage that has a low temperature coefficient.
Owner:SKYWORKS SOLUTIONS INC

Thermal management system and thermal management method of battery pack of electric automobile

The invention discloses a thermal management system and a thermal management method of a battery pack of an electric automobile. The thermal management system comprises the battery pack and further comprises a water pump, wherein the battery pack comprises a cooling plate for cooling liquid to flow circularly; the water pump is connected with the battery pack; the water pump is connected to a water inlet of a three-way valve; each of two water outlets of the three-way valve is connected with a PTC (Positive Temperature Coefficient) heater and a radiator; the PTC heaters and the radiators are connected on the battery pack; and all components mentioned above are connected with one another through cooling liquid pipelines. The thermal management system disclosed by the invention is a feasible and reliable thermal management structure by which the battery pack is cooled in a way of liquid cooling, wherein heat of batteries is taken away by the cooling plate, and isolation of the cooling plate from the batteries is achieved by adopting a heat-conducting insulation board; in addition, radiating and cooling abilities of the entire battery pack are achieved by employing the water pump, the radiators, the PTC heaters, etc.
Owner:CHERY AUTOMOBILE CO LTD

Heater with simultaneous hot spot and mechanical intrusion protection

InactiveUS6958463B1Excellent dielectric propertiesPreventing and minimizing current leakageHeating element shapesFiberElectrical conductor
An electrical heater utilizes negative temperature coefficient material (NTC) and current imbalance between live and neutral ends of the heater to simultaneously protect the heater from the hot spot and mechanical intrusion into the heating cable. The NTC layer, separating the heating wire and current leakage conductor, becomes electrically conductive at the temperatures above 60° C., thus “leaking” the current to earth. The hot spot is detected by measuring the current imbalance between line and neutral connections of the heating cable. The mechanical intrusion into the heater, such as cable or insulation damage, water or sharp metal object penetration, is also simultaneously measured by the same current imbalance measuring system such as Ground Fault Circuit Interrupter (GFCI). The optional return conductor and metal foil / mesh hot spot detection shields cancel electromagnetic field. The heater may contain positive temperature coefficient (PTC) continuous sensor to control the temperature in the heater. Such PTC sensor can be made of electrically conductive fibers and / or metal wires.
Owner:THERMOSOFT INT

Nonaqueous electrolyte secondary battery and method for manufacturing the same

A lithium ion secondary battery includes a positive electrode, a negative electrode, a porous insulating layer and a nonaqueous electrolyte. The porous insulating layer is provided between the positive electrode material mixture layer and the negative electrode material mixture layer and contains a material which does not have a shutdown function. The positive electrode is provided with a PTC layer extending substantially parallel to the positive electrode collector and the negative electrode is provided with a PTC layer extending substantially parallel to the negative electrode collector. Each of the PTC layers contains a material having a positive temperature coefficient of resistance.
Owner:PANASONIC CORP

Devices and methods for protection of rechargeable elements

A protection circuit for use with a charger and a chargeable element, such as a rechargeable lithium ion battery, comprises a shunt regulator having a threshold ON voltage coupled in parallel across the chargeable element, and a temperature-dependent resistor, e.g., a positive temperature coefficient device, coupled in series between the charger and the chargeable element. The temperature dependent resistor is thermally and electrically coupled to the shunt regulator, wherein the first variable resistor limits current flowing through the shunt regulator if the current reaches a predetermined level less than that which would cause failure of the regulator, due to ohmic heating of the regulator.
Owner:LITTELFUSE INC

Voltage reference circuit

A voltage reference circuit including a positive temperature coefficient current generator, a negative temperature coefficient current generator, and a first resistor is provided. In the positive temperature coefficient current generator, two transistors are operated in the weak inversion region, and a second resistor is connected in series between the gates of the two transistors. The second resistor employs the characteristic that a transistor operated in weak inversion region acts like a bipolar junction transistor to generate a positive temperature coefficient current. The negative temperature coefficient current generator generates a negative temperature coefficient current in response to a negative temperature coefficient voltage drop on a third resistor. The positive temperature coefficient current and the negative temperature coefficient current flow through the first resistor together, thus producing a stable reference voltage.
Owner:FARADAY TECH CORP

Convective cushion with positive coefficient of resistance heating mode

A cushion that is heated convectively using a positive temperature coefficient of resistance type resistive heating element that is provided with heat exchanging surfaces, includes a mattress pad, seat or the like with a bottom surface secured around its perimeter to an air permeable top surface, forming a plenum and containing tubular spacer material or other air flow structure therein. The plenum is connected to a power unit housing a blower, a heating module and a controller unit. The heating module includes a PTC type heating element in conduction with a base plate and a number of heat exchanger fins. Preferably the heating element is sandwiched between a pair of the base plates and the heat exchanger fins, and there is a seal between the base plates to minimize air flow from the blower from passing there between. A remote control for the user's convenience may be provided, and a foldable antenna attachable to the convective unit facilitates wireless communication between the remote control and controller unit. The user resting atop the cushion is able to control the blower and heating module to deliver air of a desired temperature and quantity to the cushion and through the top surface. The invention advantageously replaces the current carrying, conductive wires and insulation found inside prior art heated mattresses, enhancing safety and performance while at the same time offering a cooled or ventilated capability.
Owner:FEHER STEVE

Lithium ion secondary battery anode and lithium ion secondary battery including the same

The invention provides a positive electrode of a Li-ion secondary battery. The positive electrode comprises a current collector, and a coating layer and a positive electrode material layer on the current collector, wherein the coating layer contains a positive active material, a positive temperature coefficient material and an adhesive. The invention also provides a Li-ion secondary battery including the positive electrode. The positive electrode can improve the battery safety performance and can ensure no capacity loss of the battery.
Owner:BYD CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products