Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

27803 results about "Conductive materials" patented technology

'Electrically Conductive' means the ability of any material or object to conduct electricity through it with offering least possible resistance to the flow of electrons. Silver is found to be the most conductive material of all.

Transistor and semiconductor device

A transistor is provided, which is entirely and partially transparent by the use of a transparent channel layer made of zinc oxide or the like. A channel layer 11 formed of a transparent semiconductor such as zinc oxide ZnO. A transparent electrode is used for all of a source 12, a drain 13 and a gate 14, or a part of them. As the transparent electrode, a transparent conductive material such as conductive ZnO doped with, for example, group III elements is used. As a gate insulating layer 15, a transparent insulative material such as insulative ZnO doped with elements capable of taking a valence of one as a valence number or group V elements is used. If a substrate 16 must be transparent, for example, glass, sapphire, plastic or the like can be used as a transparent material.
Owner:JAPAN SCI & TECH CORP

Electrosurgical jaw structure for controlled energy delivery

A working end of a surgical instrument that carries first and second jaws for delivering energy to tissue. In a preferred embodiment, at least one jaw of the working end defines a tissue-engagement plane that contacts the targeted tissue. The cross-section of the engagement plane reveals that it defines a surface conductive portion that overlies a variably resistive matrix of a temperature-sensitive resistive material or a pressure-sensitive resistive material. An interior of the jaw carries a conductive material or electrode that is coupled to an Rf source and controller. In an exemplary embodiment, the variably resistive matrix can comprise a positive temperature coefficient (PTC) material, such as a ceramic, that is engineered to exhibit a dramatically increasing resistance (i.e., several orders of magnitude) above a specific temperature of the material. In use, the engagement plane will apply active Rf energy to captured tissue until the point in time that the variably resistive matrix is heated to its selected switching range. Thereafter, current flow from the conductive electrode through the engagement surface will be terminated due to the exponential increase in the resistance of variably resistive matrix to provide instant and automatic reduction of Rf energy application. Further, the variably resistive matrix can effectively function as a resistive electrode to thereafter conduct thermal energy to the engaged tissue volume. Thus, the jaw structure can automatically modulate the application of energy to tissue between active Rf heating and passive conductive heating of captured tissue to maintain a target temperature level.
Owner:ETHICON ENDO SURGERY INC

Electrochemical analyte sensor

An electrochemical analyte sensor having conductive traces on a substrate is used to determine a level of analyte in in vitro or in vivo analyte-containing fluids. The electrochemical analyte sensor includes a substrate and conductive material disposed on the substrate, the conductive material forming a working electrode. In some sensors, the conductive material is disposed in recessed channels formed in a surface of the sensor. An electron transfer agent and / or catalyst may be provided to facilitate the electrolysis of the analyte or of a second compound whose level depends on the level of the analyte. A potential is formed between the working electrode and a reference electrode or counter / reference electrode and the resulting current is a function of the concentration of the analyte in the fluid.
Owner:ABBOTT DIABETES CARE INC

Analyte monitoring device and methods of use

An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.
Owner:THERASENSE

Analyte monitoring device and methods of use

An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte. The analyte monitor may also be part of a drug delivery system to alter the level of the analyte based on the data obtained using the sensor.
Owner:ABBOTT DIABETES CARE INC

Bendable high flux LED array

A bendable light emitting diode (LED) array in accordance with the present invention includes heat spreaders, dielectric material disposed above each heat spreader, and a bendable electrical interconnection layer disposed above these heat spreaders and electrically insulated from these heat spreaders by the dielectric material. At least one via passes through the dielectric material above each heat spreader, and at least one LED die is disposed above each via. The bendable electrical interconnection layer may be a lead frame comprising metal pathways that electrically interconnect some or all LED dice in series, in parallel, in anti-parallel, or in some combination of these configurations. Each via contains a thermally conductive material in thermal contact with the corresponding heat spreader below it and in thermal contact with the corresponding LED die above it. The LED dice may be thermally and electrically coupled to submounts disposed above corresponding heat spreaders in some embodiments.
Owner:EPISTAR CORP

Deposition of an intermediate catalytic layer on a barrier layer for copper metallization

In one embodiment, a method for depositing a conductive material on a substrate is provided which includes exposing a substrate containing a barrier layer to a volatile reducing precursor to form a reducing layer during a soak process, exposing the reducing layer to a catalytic-metal precursor to deposit a catalytic metal-containing layer on the barrier layer, and depositing a conductive layer (e.g., copper) on the catalytic metal-containing layer. The volatile reducing precursor may include phosphine, diborane, silane, a plasma thereof, or a combination thereof and be exposed to the substrate for a time period within a range from about 1 second to about 30 seconds during the soak process. The catalytic metal-containing layer may contain ruthenium, cobalt, rhodium, iridium, nickel, palladium, platinum, silver, or copper. In one example, the catalytic metal-containing layer is deposited by a vapor deposition process utilizing ruthenium tetroxide formed by an in situ process.
Owner:APPLIED MATERIALS INC

Phosphor screen and displays systems

A phosphor screen for image forming including phosphor material being excitable by light in a wavelength λ1. The phosphor screen receives an optical image from an image forming optical system and produces the optical image at a second wavelength λ2. The phosphor screen includes a phosphor layer comprising the phosphor material. A short-pass reflective coating is positioned on a first side of the phosphor layer. The short-pass reflective coating transmits the wavelength λ1 and reflects the wavelength λ2. A long-pass reflective coating is positioned on a second side of the phosphor layer. The long-pass reflective coating transmits the wavelength λ2 and reflects the wavelength λ1. A first substrate is positioned over the short-pass reflective coating. The first substrate is formed of optically clear and thermal conductive material. A second substrate is positioned over the long-pass reflective coating. The second substrate is formed of long-pass absorptive optical filter material that transmits the wavelength λ2 and absorbs wavelength λ1 from ambient light to prevent the phosphor layer from being excited by the ambient light. The phosphor screen may alternatively be used for a direct-view visual display apparatus. These principles can also be utilized for backlighting and general illumination applications.
Owner:ROCKWELL COLLINS INC

Method of forming MEMS device

A method of forming a MEMS device includes depositing a conductive material on a substructure, forming a first sacrificial layer over the conductive material, including forming a substantially planar surface of the first sacrificial layer, and forming a first element over the substantially planar surface of the first sacrificial layer, including communicating the first element with the conductive material through the first sacrificial layer. In addition, the method includes forming a second sacrificial layer over the first element, including forming a substantially planar surface of the second sacrificial layer, forming a support through the second sacrificial layer to the first element after forming the second sacrificial layer, including filling the support, and forming a second element over the support and the substantially planar surface of the second sacrificial layer. As such, the method further includes substantially removing the first sacrificial layer and the second sacrificial layer, thereby supporting the second element relative to the first element with the support.
Owner:TAIWAN SEMICON MFG CO LTD

Method of Forming Metal Interconnect Structures in Ultra Low-K Dielectrics

A metal interconnect structure in ultra low-k dielectrics is described having a capped interconnect layer; an interconnect feature with a contact via and a contact line formed in a dielectric layer, where the via is partially embedded into the interconnect layer; and a thin film formed on the dielectric layer and separating the dielectric layer from the contact line. A method of fabricating the interconnect structure is also described and includes forming a first dielectric on a capped interconnect element; forming a thin film over the first dielectric; forming a second dielectric on the thin film; forming a via opening on the second dielectric, the thin film and extending into the first dielectric; forming a line trench on a portion of the second dielectric; and filling the via opening and the line trench with a conductive material for forming a contact via and a contact line, where the contact via is partially embedded in the interconnect element.
Owner:GLOBALFOUNDRIES US INC

Physiological sensor device

A physiological sensor device for attachment to a mammalian subject including first and second regions of sensors attachable to a subject in use, which first and second regions of sensors are separated by a flexible web adapted to enable variable separation of the first and second sensor regions from one another in use. The physiological sensor device is manufactured by forming a strip of electrically conductive material on a flexible electrically non-conductive substrate and cutting a slot through both the flexible substrate and conductive strip to define a pair of adjacent edges of conductive material separated by a non-conductive gap thereby also to define adjacent electrode sensors each having one of the pair of adjacent edges formed in the strip of conductive material. The physiological sensor device is attached to the subject for measurement of numerous physiological parameters for a period of time, such as 24 hours, and is then thrown away.
Owner:CLEARPATH PARTNERS

An etch stop layer for dual damascene process

The present invention provides a carbon based etch stop, such as a diamond like amorphous carbon, having a low dielectric constant and a method of forming a dual damascene structure. The low k etch stop is preferably deposited between two dielectric layers and patterned to define the underlying interlevel contacts / vias. The second or upper dielectric layer is formed over the etch stop and patterned to define the intralevel interconnects. The entire dual damascene structure is then etched in a single selective etch process which first etches the patterned interconnects, then etches the contact / vias past the patterned etch stop. The etch stop has a low dielectric constant relative to a conventional SiN etch stop, which minimizes the capacitive coupling between adjacent interconnect lines. The dual damascene structure is then filled with a suitable conductive material such as aluminum or copper and planarized using chemical mechanical polishing.
Owner:APPLIED MATERIALS INC

Implantable medical device package antenna

A wireless communication system is provided that includes an antenna structure adapted for coupling to a medical device antenna when the medical device is not implanted in a patient's body. The antenna structure effectively extends the medical device antenna length, thereby improving the efficiency and reliability of a communication link between the medical device and a programmer or monitor outside the implanted environment. The antenna structure is fabricated from any conductive material, which may be in the form of conductive wire, tape, ink, foil, film, adhesive or the like, and is attached to a portion of a medical device packaging assembly or another accessory device or substrate such as a pouch or overlay. The antenna structure may be a monopole, dipole, slot antenna, microstrip patch, or loop antenna, and may be fixed or movable relative to the substrate on which it is implemented.
Owner:MEDTRONIC INC

Method of making a transcutaneous electrochemical sensor

A process for the manufacture of small sensors with reproducible surfaces, including electrochemical sensors. One process includes fanning channels in the surface of a substrate and disposing a conductive material in the channels to form an electrode. The conductive material can also be formed on the substrate by other impact and non-impact methods. In a preferred embodiment, the method includes cutting the substrate to form a sensor having a connector portion and a transcutaneous portion, the two portions having edges that define one continuous straight line.
Owner:THERASENSE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products