Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1379 results about "Loop antenna" patented technology

A loop antenna is a radio antenna consisting of a loop or coil of wire, tubing, or other electrical conductor usually fed by a balanced source or feeding a balanced load. Within this physical description there are two distinct antenna types. The large self-resonant loop antenna has a circumference close to one wavelength of the operating frequency and so is resonant at that frequency. This category also includes smaller loops 5% to 30% of a wavelength in circumference, which use a capacitor to make them resonant. These antennas are used for both transmission and reception. In contrast, small loop antennas less than 1% of a wavelength in size are very inefficient radiators, and so are only used for reception. An example is the ferrite (loopstick) antenna used in most AM broadcast radios. Loop antennas have a dipole radiation pattern; they are most sensitive to radio waves in two broad lobes in opposite directions, 180° apart. Due to this directional pattern they are used for radio direction finding (RDF), to locate the position of a transmitter.

Touch screen RFID tag reader

The efficient incorporation of RFID circuitry within touch sensor panel circuitry is disclosed. The RFID antenna can be placed in the touch sensor panel, such that the touch sensor panel can now additionally function as an RFID transponder. No separate space-consuming RFID antenna is necessary. Loops (single or multiple) forming the loop antenna of the RFID circuit (for either reader or tag applications) can be formed from metal on the same layer as metal traces formed in the borders of a substrate. Forming loops from metal on the same layer as the metal traces are advantageous in that the loops can be formed during the same processing step as the metal traces, without requiring a separate metal layer.
Owner:APPLE INC

Shared Antenna Structures for Near-Field Communications and Non-Near-Field Communications Circuitry

Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include conductive housing structures such as a peripheral conductive housing member. The antenna structures may be based on an inverted-F antenna resonating element or other types of antenna resonating element. An electronic device may have near field communications circuitry and non-near-field communications circuitry such as cellular telephone, satellite navigation system, or wireless local area network transceiver circuitry. Antenna structures may be configured to handle signals associated with the non-near-field communications circuitry. The antenna structures may also have portions that form a near field communications loop antenna for handling signals associated with the near field communications circuitry.
Owner:APPLE INC

Digitizer function-equipped liquid crystal display device information processing electronic device, and game device

Provided is a digitizer function-equipped liquid crystal display device capable of preventing the wire shadows of a loop antenna from being projected on a liquid crystal panel and capable of being applied to a large size liquid crystal panel. It is also possible to provide an information processing electronic device and a game device provided with the digitizer function-equipped liquid crystal display device. Here, the digitizer function-equipped liquid crystal display device includes: a liquid crystal panel 1; a light diffusion member 2 which is disposed between the liquid crystal panel 1 and a backlight 5 irradiating the liquid crystal panel 1 with light; an electromagnetic induction type loop antenna which is disposed at a portion apart from the light diffusion member 2 in the direction toward the backlight 5 by a predetermined spacing so as to detect a position on the plane of the liquid crystal panel 1 in one coordinate axis direction and another coordinate axis direction that intersects the one coordinate axis direction; and a spacing retaining means for retaining the spacing between the light diffusion member 2 and loop antenna at a predetermined spacing value. As the spacing retaining means, a first light transmitting member 3 formed of a plate material having a light transmitting property is used.
Owner:SEGA CORP

Wireless communications device including side-by-side passive loop antennas and related methods

A wireless communications device may include a housing, and wireless communications circuitry carried by the housing. The wireless communications device may also include an antenna assembly carried by the housing and coupled to the wireless communications circuitry. The antenna assembly may include a substrate and a plurality of passive loop antennas carried by the substrate and arranged in side-by-side relation. Each of the plurality of spaced apart passive loop antennas may include a passive loop conductor and a tuning element coupled thereto. The antenna assembly may also include an active loop antenna carried by the substrate and arranged to be at least partially coextensive with each of the plurality of passive loop antennas. The active loop antenna may include an active loop conductor and a pair of feedpoints defined therein.
Owner:HARRIS CORP

RFID tag and manufacturing method thereof

A RFID tag having a loop antenna comprises: a flat plate shaped dielectric member 51; first and second loop antenna patterns 52, 53 that are formed on a first and second surface of the dielectric member 51 so that they are separated from each other by a specified space, and so that each is continuous from the first surface to the second surface of the dielectric member 51; and an IC chip 54 that electrically connects the first and second loop antenna patterns 52, 53 on one of the surfaces.
Owner:FUJITSU LTD

Lightning locating system

A lightning detection system for detecting and locating an initial discharge of an initial leader stroke of a lightning flash. An initial lightning discharge produces a pulse that can be used to accurately detect lightning, and more particularly, the location of the initial lightning discharge. In one embodiment, at least three sensors detect and determine the location of the first pulses from initial lightning discharges using time difference of arrival information of the pulses at each of the three sensors. In another embodiment, a single sensor is used to determine the range of an initial lightning discharge from the amplitude of a corresponding initial detected pulse, and to determine the direction from a crossed loop antenna An alternative embodiment of a single sensor system determines a distance of a lightning event from a peak amplitude value derived from a pulse amplitude distribution. In a further embodiment, a lightning detection system provides enhanced lightning location by incorporating weather data from a weather radar with detected lightning information.
Owner:STRATEGIC DESIGN FEDERATION W LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products