Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1268 results about "Synchronous rectifier" patented technology

Synchronous Rectification Controllers. Synchronous rectifiers are used to drive power MOSFETs that replace the rectification diodes in the secondary side of SMPS, thus providing high efficiency especially in low-output-voltage, high-current power supplies.

Power transmission method of high-power wireless induction power supply system

A power transmission method used in a high-power wireless induction power supply system consisting of a power-supplying module and a power-receiving module is disclosed. The power-supplying module regulates its output energy by means of frequency modulation and driving power adjustment, enabling the energy to be received by the power-receiving module and transmitted through a power-receiving coil array and a primary resonant capacitor and a secondary resonant capacitor of power-receiving resonance circuit, a synchronizing rectifier, a low-power voltage stabilizer, a high-frequency filter capacitor, a first power switch, a low-frequency filter capacitor and a second power switch of a filter circuit for output to an external apparatus.
Owner:FU TONG TECH

Synchronous Rectifier Design for Wireless Power Receiver

Synchronous rectifier circuit topologies for a wireless power receiver receiving a supply of power from a wireless transmitter are disclosed. The synchronous rectifier circuit topologies include a half-bridge diode-FET transistor rectifier for rectifying the wireless power into power including a DC waveform, using a control scheme that may be provided by a delay-locked loop clock, or phase shifters, or wavelength links to control conduction of FET transistors in the synchronous rectifier circuit topology, and maintaining a constant switching frequency to have the diodes, coupled to FET transistors, to allow current to flow through each one respectively at the appropriate timing, focusing on high conduction times. The synchronous rectifier circuit topologies may enable power transfer of high-frequency signals at enhanced efficiency due to significant reduction of forward voltage drop and lossless switching.
Owner:ENERGOUS CORPORATION

MMIC DC-to-DC converter

An improved Monolithic Microwave Integrated Circuit DC-to-DC voltage converter fabricated in GaAs MESFET technology is introduced. The converter comprises a differential oscillator having crossed-coupled symmetrical inductors that ensure low-noise operation. The converter further comprises a highly-efficient synchronous rectifier and a start-up enable circuit.
Owner:AL KURAN SHIHAB +1

Vrms and rectified current sense full-bridge synchronous-rectification integrated with PFC

A synchronous full bridge rectifier is controlled to provide a power factor near unity. The full bridge rectifiers are transistors each with a controlling input. The AC input signal and currents within the circuit are sensed and sent to a controller. In response, the controller output control signals to turn on / off the rectifying MOSFETS on a timely basis to form a power factor of near one with respect to the AC input signal. The full wave rectifier is made of N-channel MOSFET's, some with fast body diodes. The MOSFET's are rectifiers and PFC control elements. The result is a one stage synchronous rectifier with PFC. A solid state precision analog differential amplifier senses the AC line waveform and high frequency current transformers sense the currents. The controller accepts the inputs of the amplifier and the sensed currents and outputs control signals that turn on and off the four MOSFET's. The timing of turning on / off is arranged so that the current drawn from the AC source is sinusoidal and matches the phase of the sinusoidal AC source.
Owner:SEMICON COMPONENTS IND LLC

Isolated DC-DC converters with high current capability

A DC-to-DC converter having a transformer with a primary and a tapped secondary, two serial output filter inductors connected parallel with the secondary, a center output filter inductor connected between the secondary tap and serial output inductors, two serially connected switches connected in parallel with the two output inductors for receiving a signal to control operation of the switches during steady state and an output load connected between the serial connection of the serial output inductors and serial switching devices. The transformer primary side connected with double-ended primary-side topologies. The transformer secondary and output filers configured to form a current tripler rectifier, current quadtupler rectifier or current N-tuper rectifier. The output filter inductors evenly share output current resulting in reduction of current and thermal stress during high current application and the rectification topology has simple driving for synchronous rectifier application without increasing complexity of control and operation of primary-side topologies.
Owner:UNIV OF CENT FLORIDA RES FOUND INC

Determining dead times in switched-mode DC-DC converters

ActiveUS20060152204A1Improve efficiencySimpler and faster and accurate implementationEfficient power electronics conversionDc-dc conversionDc dc converterDead time
Systems, methods, and apparatuses are disclosed for determining dead-times in switched-mode DC-DC converters with synchronous rectifiers or other complementary switching devices. In one embodiment, for example, a controller for a DC-DC converter determines dead-times for switching devices of a synchronous rectifier or other complementary switching device of the converter in which a dead-time is derived from an output voltage or current that is already sensed and used in the output regulation of the converter. In another embodiment, a controller is provided for controlling a switched-mode DC-DC converter comprising a pair of power switches. The controller comprises an input, a reference generator, a comparator, a compensator, a dead-time sub-controller, and a modulator. In another embodiment, the controller may adjust the dead-times during the operation of the converter to adjust periodically and / or in response to changes in operating conditions. In addition, methods of determining dead-times of control signals for a switched-mode DC-DC converter comprising a pair of power switches and of controlling a DC-DC converter are also disclosed.
Owner:UNIV OF COLORADO THE REGENTS OF

Vrms and rectified current sense full-bridge synchronous-rectification integrated with PFC

A synchronous full bridge rectifier is controlled to provide a power factor near unity. The full bridge rectifiers are transistors each with a controlling input. The AC input signal and currents within the circuit are sensed and sent to a controller. In response, the controller output control signals to turn on / off the rectifying MOSFETS on a timely basis to form a power factor of near one with respect to the AC input signal. The full wave rectifier is made of N-channel MOSFET's, some with fast body diodes. The MOSFET's are rectifiers and PFC control elements. The result is a one stage synchronous rectifier with PFC. A solid state precision analog differential amplifier senses the AC line waveform and high frequency current transformers sense the currents. The controller accepts the inputs of the amplifier and the sensed currents and outputs control signals that turn on and off the four MOSFET's. The timing of turning on / off is arranged so that the current drawn from the AC source is sinusoidal and matches the phase of the sinusoidal AC source.
Owner:SEMICON COMPONENTS IND LLC

System and method for synchronous rectifier drive that enables converters to operate in transition and discontinuous mode

A synchronous rectifier is switched in accordance with a primary switch transition and a reference signal representing current in a current storage device to which the synchronous rectifier is coupled. A current emulator provides a signal representing current in the current storage device as a volt-second product so that current stored in the current storage device while the primary switch is on is discharged by the synchronous rectifier. The use of a current emulator provides an inexpensive solution for controlling synchronous rectifier transitions without resorting to more expensive current sensing solutions that are commercially impracticable. Blanking intervals are provided for avoiding false transitions of the synchronous rectifier when the primary switch turns on and after the synchronous rectifier turns off. The disclosed system and method can be applied to flyback converters for a synchronous rectifier on the secondary side of a transformer, or the inductor of buck converters.
Owner:TEXAS INSTR INC

Synchronous rectification circuit having burst mode controller and controlling method thereof

The configuration of a synchronous rectification circuit and a controlling method thereof are provided. The proposed circuit includes a converter including a first switch and a first synchronous rectifier, and a burst mode controller including a logic process module performing one of functions of delaying one of a non-integer and at least one operating periods to generate a synchronous rectification driving signal of the first synchronous rectifier counting from a beginning of a first pulse of a driving signal of the first switch during a working time of a burst period, and turning off the synchronous rectification driving signal of the first synchronous rectifier by one of the non-integer operating period and the at least one operating period ahead of an ending of a last operating period of the driving signal of the first switch during the working time of the burst period.
Owner:DELTA ELECTRONICS INC

Control circuit associated with saturable inductor operated as synchronous rectifier forward power converter

A circuit for synchronous rectifying is provided for forward power converter. A secondary winding of a transformer includes a first terminal and a second terminal for generating a switching voltage. A saturable inductor is coupled from the second terminal to a third terminal for providing a delay time. A first transistor is coupled from the first terminal to a ground terminal. A second transistor is connected from the third terminal to the ground terminal. The first and second transistors operate as synchronous rectifiers. An inductor is equipped from the third terminal to an output terminal of the forward power converter. Furthermore, a current-sensing device generates a current signal in response to an inductor current of the inductor. A control circuit receives the switching voltage and the current signal for generating a plurality of signals for driving a plurality of transistors, respectively.
Owner:SEMICON COMPONENTS IND LLC

Drive circuits for synchronous rectifiers

A method and system for providing synchronous rectification in power converters that includes controlling turnoff of a synchronous rectifier according to a timing signal representative of the switching time of a switch that is coupled to input of the power converter. Such a timing signal may be obtained directly or indirectly in various ways; for example, by sensing the voltage across the primary switch, or by sensing the drive voltage of the primary switch. Additional alternatives in an isolated converter having a transformer with a primary winding that is selectively coupled to the electrical power source includes sensing the primary winding voltage, for example, by directly sensing the primary voltage or by sensing the voltage across an auxiliary winding that is closely coupled to the primary winding.
Owner:LAMBDA ELECTRONICS

Two-stage single phase bi-directional pwm power converter with DC link capacitor reduction

DC link capacitance in a bi-directional AC / DC power converter using a full-bridge or H-bridge switching circuit can be greatly reduced and the power density of the power converter correspondingly increased by inclusion of a bi-directional synchronous rectifier (SR) DC / DC converter as a second stage of the power converter and controlling the second stage with a control loop having a transfer function common to both buck and boost modes of operation of the bi-directional SR DC / DC converter and a resonant transfer function to increase gain at the ripple voltage frequency (twice the AC line frequency) to control the duty cycle of the switches of the bi-directional SR DC / DC stage and controlling the duty cycle of the switches of the full-bridge or H-bridge switching circuit using a control loop including a notch filter at the ripple voltage frequency.
Owner:VIRGINIA TECH INTPROP INC

Unidirectional mosfet and applications thereof

Owing to the property of bidirectional conduction under the saturation mode, synchronous rectifiers in conventional power converters usually suffer from a reverse current under light loads or a shoot-through current under heavy loads. The reverse current may degrade the converter efficiency and the shoot-through current may damage synchronous rectifiers. The present invention discloses a unidirectional metal oxide semiconductor field effect transistor (UMOS), which comprises a metal oxide semiconductor field effect transistor (MOS), a current detection circuit and a fast turn-off circuit. The current detection circuit detects the direction of the current flowing through the MOS. When a forward current is detected, the fast turn-off circuit is disabled and the channel of the MOS can be formed. When a reverse current is detected, the fast turn-off circuit is enabled and the channel of the MOS cannot be formed. This UMOS can be applied, but not limited, to synchronous rectifiers to detect the occurrence of a reverse current or a shoot-through current and fast turn off the channel of the MOSFET.
Owner:GLACIALTECH +1

Pwm controller for synchronous rectifier of flyback power converter

A synchronous rectifier PWM (SR-PWM) controller controls a MOSFET in response to the value of a secondary current and the status of a synchronous signal for both discontinuous and continuous operation mode. The secondary current is generated in a secondary circuit and is detected by two threshold-detection terminals of the SR-PWM controller. The SR-PWM controller produces the synchronous signal by detecting a switching signal of the transformer via a detection terminal of the SR-PWM controller. Furthermore, a delay-time is inserted after the MOSFET is turned off and before the next switching cycle starts to ensure a proper operation of the MOSFET. In one embodiment, an equivalent series resistance (ESR) of an output capacitor can be used as a sensor to detect the secondary current. Therefore, no additional current sensor is required and the efficiency can be improved.
Owner:SEMICON COMPONENTS IND LLC

System and method for bidirectional wireless power transfer

ActiveUS20150244176A1Reducing and eliminating power draw in powerThe process is simple and effectiveNear-field transmissionTransformersSelf drivenElectric power
The present invention relates to a wireless power supply system including a remote device capable of both transmitting and receiving power wirelessly. The remote device includes a self-driven synchronous rectifier. The wireless power supply system may also include a wireless power supply configured to enter an OFF state in which no power, or substantially no power, is drawn, and to wake from the OFF state in response to receiving power from a remote device.
Owner:PHILIPS IP VENTURES BV

Programmable Step-Down Switching Voltage Regulators with Adaptive Power MOSFETs

A step-down switching voltage regulator includes M high-side switches connected between an input voltage and a node; N synchronous rectifiers connected between the node Vx and a ground voltage and an inductor connected between an input voltage and a node Vx and an inductor connected between the node Vx and an output node. An interface circuit decodes a control signal to identify: 1) a subset (m) of the high-side switches, 2) a subset (n) of the synchronous rectifiers. A control circuit drives the high-side switches and synchronous rectifiers in a repeating sequence that includes an inductor charging phase where the high-side switches in the subset m are activated to connect the node Vx to the input voltage; and an inductor discharging phase where the synchronous rectifiers in the subset n are activated to connect the node Vx to the ground voltage.
Owner:ADVANCED ANALOGIC TECHNOLOGIES INCORPORATED

High-efficiency power converter system

In one embodiment, a power converter system includes a first input terminal and a second input terminal operable to connect to an alternating current (AC) power source, and an output terminal at which an output voltage can be provided to a load. A first inductor and a first diode are connected in series between the first input terminal and the output terminal. A second inductor and a second diode are connected in series between the second input terminal and the output terminal. A first switch is connected to the first inductor and the first diode, and a second switch is connected to the second inductor and the second diode. The first switch and the second switch alternately function as a boost switch and a synchronous rectifier for charging and discharging the first and second inductors during operation of the power converter system. An auxiliary network is operable to provide for zero voltage switching (ZVS) and zero current switching (ZCS) conditions for both the first and second switches during operation of the power converter system.
Owner:SEMICON COMPONENTS IND LLC

PWM controller for synchronous rectifier of flyback power converter

A synchronous rectifier PWM (SR-PWM) controller controls a MOSFET in response to the value of a secondary current and the status of a synchronous signal for both discontinuous and continuous operation mode. The secondary current is generated in a secondary circuit and is detected by two threshold-detection terminals of the SR-PWM controller. The SR-PWM controller produces the synchronous signal by detecting a switching signal of the transformer via a detection terminal of the SR-PWM controller. Furthermore, a delay-time is inserted after the MOSFET is turned off and before the next switching cycle starts to ensure a proper operation of the MOSFET. In one embodiment, an equivalent series resistance (ESR) of an output capacitor can be used as a sensor to detect the secondary current. Therefore, no additional current sensor is required.
Owner:SEMICON COMPONENTS IND LLC

Bridge synchronous rectifier

A current-triggered synchro-rectifier comprising an electronic switch configured to be in its ON setting when the current flowing through its cathode exceeds a predetermined threshold. The electronic switch may include a half-wave rectifier wired to the source terminal and the drain terminal of a MOSFET device, and a current monitor configured to monitor the drain-current flowing through the drain terminal. The current monitor sends a gate signal to the gate terminal such that the MOSFET is switched to its ON state when the drain-current exceeds a first threshold current and the MOSFET is switched to its OFF state when the drain-current falls below a second threshold current. Usefully, the synchro-rectifier may be incorporated into a full-wave rectifier.
Owner:POWERMAT TECHNOLOGIES

DC-DC flyback converter having a synchronous rectification self-driven circuit

A DC-DC flyback converter, includes a three-winding transformer; a primary power circuit having a first MOSFET connected to a first winding of the transformer; a secondary power circuit connected to a second winding of the transformer terminals; and a self-driven circuit connected to a third winding of the transformer. The secondary power circuit includes a synchronous rectifier in the form of a second MOSFET and the self-driven circuit further includes a delay drive circuit, an isolation differential circuit, a negative removal circuit having a third MOSFET and a synchronous rectifier trigger switch-off circuit for switching the synchronous rectifier to an off condition.
Owner:YIBO POWER SUPPLY CO LTD HANGZHOU

Secondary side synchronous rectifier for resonant converter

A resonant converter including a primary side switching stage having high- and low-side switches series connected at a switching node and controlled by a primary side controller; a transformer having a primary coil and a secondary coil, the secondary coil having at least one pair of portions series connected at a node, a resonant tank formed by series connecting the primary coil to the switching node with a first inductor and a first capacitor; at least one pair of first and second secondary side switches connected to the at least one pair of portions, respectively, the first and second secondary side switches of each pair being used for synchronous rectification; and a secondary side controller to control and drive the first and second secondary side switches of each pair by sensing voltage across each secondary side switch and determining a turn ON and turn OFF transition for the first and second secondary side switches in close proximity to a point in time when there is zero current through the secondary side switch to achieve synchronous rectification.
Owner:INFINEON TECH AMERICAS CORP

DC power converter having bipolar output and bi-directional reactive current transfer

A dc power converter having bipolar output and bi-directional reactive current transfer is disclosed. The dc power converter comprises: a direct current source; a modulator coupled to the direct current source, the modulator comprising at least two switch means for generating a waveform pulse; a transformer primary winding capacitively coupled to the modulator; at least two transformer secondary windings magnetically coupled to the transformer primary winding; and two synchronous rectifiers coupled to a first and second secondary winding respectively of the at least two transformer secondary windings. The first and second synchronous rectifiers each comprise: a switching means for interrupting a current path connected in series with a respective secondary winding first polarity pole, and a capacitor coupled in series with the switching means. The first secondary winding second polarity pole is coupled to the second secondary winding first polarity pole such that an output voltage from the first synchronous rectifier is in electrical opposition to a second output voltage from the second synchronous rectifier.
Owner:MICROCHIP TECH INC

Power-Supply Unit, Hard-Disk Drive, and Switching Method of the Power-Supply Unit

A power-supply unit which comprises a transformer, a full bridge circuit consisting of four arm switches provided on a primary side of the transformer, a rectifier and smoothing circuit including two synchronous rectifier switches provided on a secondary side of the transformer, a choke coil, and a capacitor, an output terminal provided in the rectifier and smoothing circuit, a control circuit controlling ON / OFF of the four arm switches of the full bridge circuit and the two synchronous rectifier switches of the rectifier and smoothing circuit, a resonant inductor consisting of a leakage inductor component of the transformer and a parasitic inductor component of wirings on the primary side of the transformer, and a resonant capacitor consisting of a parasitic capacitor component of the arm switches of the full bridge circuit, and in which the control circuit comprises timing variable means which varies switching timings of the two synchronous rectifier switches of the rectifier and smoothing circuit based on an output current flowing in the output terminal provided in the rectifier and smoothing circuit.
Owner:HITACHI LTD

Multi-phase interleaving isolated DC/DC converter

InactiveUS6944033B1Reduces synchronous rectifier conduction loss lossReduces loss transformer winding lossDc-dc conversionElectric variable regulationCapacitanceInductor
A converter has a transformer with primary and secondary windings each having n coils in a series-series arrangement connected to primary and secondary sides. The primary side has n primary legs each having a top switch and a bottom switch and connected to the primary winding therebetween. The secondary side has n secondary legs, each secondary leg has a synchronous rectifier switch and an output filter inductor connected to the secondary winding therebetween. A complimentary control for the primary side comprising a gate driver transformer with primary winding in series with a DC blocking capacitor connected to a drain and a source of the top switch of each primary leg, and a gate drive transformer, for each primary leg, with secondary winding containing a leakage inductor and in series with a DC blocking capacitor and a damping resistor connected to gate and source of the secondary side synchronous rectifier.
Owner:VIRGINIA TECH INTPROP INC

Three-pin integrated synchronous rectifier and a flyback synchronous rectifying circuit

A three-pin integrated synchronous rectifier is the synchronous rectifier chip where the quantity of connection pins is the smallest possible quantity. The three-pin integrated synchronous rectifier uses a control pin to receive a control signal used as a power bias voltage and a synchronous pulse to make the synchronous rectifier chip operate normally. The control signal is obtained from the output pin of an auxiliary winding via a diode. The other pins are respectively the drain pin and the source pin of an internal power transistor and are connected with the output winding and the voltage output terminal for transmitting the power of the transformer to supply current for the loading.
Owner:NIKO SEMICON

Adaptive rectifier Architecture and method for switching regulators

An adjustable compensation offset voltage is applied to a comparator to vary turn-off timing of a synchronous rectifier. A comparator output indicates when current through an inductor coupled to the synchronous rectifier should be approaching zero. If the synchronous rectifier is turned off before the current through the inductor reaches zero, the compensation offset voltage is adjusted to delay the synchronous rectifier turn-off for the next switching cycle. If the synchronous rectifier is turned off after the current through the inductor reaches zero, the compensation offset voltage is adjusted to advance the synchronous rectifier turn-off for the next switching cycle. An up / down counter, in conjunction with a digital to analog converter, may be used to provide the adjustment to the compensation offset voltage. The adjustable compensation offset voltage improves the accuracy of synchronous rectifier turn-off in relation to a zero inductor current, thereby improving power converter efficiency.
Owner:TEXAS INSTR INC

Controller for a Power Converter

A controller for a power converter having a transformer T1 with a primary winding coupled to a power switch SW and a secondary winding coupled to a synchronous rectifier switch SR. In one embodiment, the controller includes a first controller configured to control a conductivity of the power switch SW, and a first delay circuit configured to delay an initiation of the conductivity of the power switch SW. The controller also includes a second controller configured to control a conductivity of the synchronous rectifier switch SR as a function of a voltage difference between two terminals thereof, and a second delay circuit configured to delay an initiation of the conductivity of the synchronous rectifier switch SR. The controller still further includes a shutdown circuit configured to substantially disable conductivity of the synchronous rectifier switch SR before the initiation of conductivity of the power switch SW.
Owner:MYPAQ HLDG LTD

Reverse current stopping circuit of synchronous rectification type DC-DC Converter

ActiveUS20090295350A1Offset voltage can be increased and decreasedEfficient power electronics conversionDc-dc conversionDc dc converterDetector circuits
A reverse current stopping circuit includes a synchronous rectification device, a comparator for detecting a reverse current of an inductor, the synchronous rectification device being turned off when the reverse current is detected by the comparator, a reverse current detector circuit for detecting a switching terminal voltage after the synchronous rectification device is turned off, thereby determining a value of the inductor current to decide whether the inductor current is flowing in a reverse direction or a forward direction, and a memory unit for receiving a predetermined output signal from the reverse current detector circuit in accordance with a result of the reverse current detector circuit, and outputting a control signal for an offset voltage in accordance with the predetermined output signal. The offset voltage is changed in accordance with the control signal so as to adjust the inductor current to zero when the synchronous rectification device is turned off.
Owner:FUJI ELECTRIC CO LTD

Synchronous rectifier control circuit and switch power supply employing same

The invention discloses a synchronous rectifier control circuit and a switch power supply employing the same. Whether the conduction time of a synchronous rectifier switch tube meets the requirement of the minimum conduction time in the same switch period and in the conduction interval of a primary side power switch tube can be judged, and the conduction of synchronous rectifier switch tube in the switch period is controlled according to the judgment result, so that secondary side current is completely avoided, electric energy is saved, and the conversion efficiency of the whole power supply circuit is greatly improved.
Owner:SILERGY SEMICON TECH (HANGZHOU) CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products