Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1908 results about "Secondary circuit" patented technology

The secondary circuit is made of the secondary ignition coil windings, distributor cap, distributor rotor, spark plug cable, and spark plug. Distributor-less systems have no distributor cap or distributor rotor. The Secondary circuit transfers the spark to the spark plugs.

Power supply system

A power supply system according to the present invention comprises: a primary side coil; a power transmission apparatus having a primary side circuit for feeding a pulse voltage resulted from switching a DC voltage which is obtained by rectifying and smoothing a commercial power supply to the primary side coil; a secondary side coil magnetically coupled to the primary side coil; and power reception equipment having a secondary side circuit for rectifying and smoothing voltage induced across the secondary side coil, wherein there is provided a power adjusting section for adjusting a level of power to be transmitted according to power required by the power reception equipment. The power adjusting section has, in the primary side circuit, a carrier wave oscillation circuit for supplying a carrier wave to the primary side coil, a demodulation circuit for demodulating a modulated signal transmitted from the secondary circuit and received by the primary side coil, and a power change-over section for selecting a level of power to be transmitted according to an information signal from the power reception equipment and demodulated by the demodulation circuit. The power adjusting section has, in the secondary side circuit, a modulation circuit for modulating the carrier wave fed from the carrier wave oscillation circuit and received by the secondary side coil with the information signal from the power reception equipment and transmitting the modulated signal.
Owner:SHARP KK

Apparatus and method for wireless energy and/or data transmission between a source device and at least one target device

The invention relates to an apparatus and a method for wireless energy and / or data transmission between a source device and at least one target device, in which apparatus and method a voltage is induced by at least one primary coil (18), on the source-device side, of at least one primary circuit in at least one secondary coil (20), on the target-device side, of at least one secondary circuit and in at least one coil of at least one resonant circuit, the resonant circuit being arranged so as to be electrically isolated from the primary circuit and from the secondary circuit.
Owner:MAQUET GMBH

Power supply system

A power supply system is provided, having: a primary side coil; a power transmission apparatus having a primary side circuit for feeding a pulse voltage resulted from switching a DC voltage which is obtained by rectifying and smoothing a commercial power supply to the primary side coil; a secondary side coil magnetically coupled to the primary side coil; and power reception equipment having a secondary side circuit for rectifying and smoothing voltage induced across the secondary side coil, wherein there is provided a power adjusting section for adjusting a level of power to be transmitted according to power required by the power reception equipment. The power adjusting section has, in the primary side circuit, a carrier wave oscillation circuit for supplying a carrier wave to the primary side coil, a demodulation circuit for demodulating a modulated signal transmitted from the secondary circuit and received by the primary side coil, and a power change-over section for selecting a level of power to be transmitted according to an information signal from the power reception equipment and demodulated by the demodulation circuit. The power adjusting section has, in the secondary side circuit, a modulation circuit for modulating the carrier wave fed from the carrier wave oscillation circuit and received by the secondary side coil with the information signal from the power reception equipment and transmitting the modulated signal.
Owner:SHARP KK

Implantable medical device with contactless power transfer housing

InactiveUS20050288743A1Minimizing surgeryMinimizing subsequent treatmentElectrotherapyElectromagnetic wave systemTransmitted powerElectrical battery
A transcutaneous recharging system for providing power to an implantable medical device comprises a primary side circuit for transmitting power in the form of magnetic flux; and a secondary side circuit integral to the implantable medical device for receiving the power transmitted from the primary side circuit and for providing the received power to recharge a battery in the implantable medical device, wherein the primary and secondary side circuits are not physically coupled. A variety of attachment configurations are disclosed for attaching and shielding the secondary circuit directly onto the housing of the implantable medical device, inclusive of flexible printed circuit coils and wire coils recessed into helical notches.
Owner:AHN IN +2

System and method for inductively charging a battery

An inductive charging system for recharging a battery. The system includes a charger circuit and a secondary circuit. The secondary circuit includes a feedback mechanism to provide feedback to the charger circuit through the inductive coupling of the primary coil and the secondary coil. The charger circuit includes a frequency control mechanism for controlling the frequency of the power applied to the primary coil at least partly in response to the feedback from the feedback mechanism.
Owner:PHILIPS IP VENTURES BV

Efficient inductive battery recharging system

A method is provided for inductively charging a rechargeable battery of a portable device in a vehicle via a primary circuit that includes a primary inductive coil, a secondary circuit that includes a secondary inductive coil, and a rectifying circuit electrically coupled to the rechargeable battery. A primary coil is energized with a supply voltage. A frequency of the supply voltage is varied. A peak voltage of the primary circuit is detected. The frequency of the supply voltage is adjusted to a respective frequency associated with the peak voltage.
Owner:LEAR CORP

Interface bus for utility-grade network communication devices

In one embodiment, a network device having a plurality of hardware interfaces is disclosed. The network device includes a central processing unit and a main circuit board. The main circuit board has expansion slots that receivably connect corresponding secondary circuit boards to the main circuit board. The main circuit board also has sensors for detecting predetermined parameters. A voltage regulator is operative to regulate one or more particular expansion slots, in response to detection of a predetermined parameter associated with respective slots.
Owner:ITRON

Pwm controller for synchronous rectifier of flyback power converter

A synchronous rectifier PWM (SR-PWM) controller controls a MOSFET in response to the value of a secondary current and the status of a synchronous signal for both discontinuous and continuous operation mode. The secondary current is generated in a secondary circuit and is detected by two threshold-detection terminals of the SR-PWM controller. The SR-PWM controller produces the synchronous signal by detecting a switching signal of the transformer via a detection terminal of the SR-PWM controller. Furthermore, a delay-time is inserted after the MOSFET is turned off and before the next switching cycle starts to ensure a proper operation of the MOSFET. In one embodiment, an equivalent series resistance (ESR) of an output capacitor can be used as a sensor to detect the secondary current. Therefore, no additional current sensor is required and the efficiency can be improved.
Owner:SEMICON COMPONENTS IND LLC

LED lighting system

A lighting system has an array (100) of at least one light-emitting solid-state element such as a light-emitting diode (LED) or a laser diode. A voltage source (10), which may supply either alternating or direct current, energizes the array. Array state circuitry (125; Q2, R2), electrically connected in series with the array (100), senses at least one state of the array, such as the amount of current passing through the array, or temperature. Secondary circuitry (127; R1, Q1; 200, 201, 202; 200, R4, Q1; 126, 127) is connected in parallel with the array (100). A switching component (Q1; Q1, Q3; 202) adjusts the current passing through the secondary circuitry in accordance with the sensed state of the array such that current through the array is maintained substantially constant. A third, parallel, excess current shunt path may also be provided, in which case so is excess current shunt circuitry, which senses current flowing in the secondary circuitry and shunts current in the secondary circuitry in excess of an excess current threshold to the excess current shunt path, whereby overflow current above a first threshold for the array (100) is shunted away from the array and excess current above a second threshold is shunted from the secondary circuits to the excess current shunt circuitry. A wide-angle mounting arrangement is also provided for the array.
Owner:NG WINNIE LAI LING

Inductive power supply with duty cycle control

An inductive power supply that maintains resonance and adjusts duty cycle based on feedback from a secondary circuit. A controller, driver circuit and switching circuit cooperate to generate an AC signal at a selected operating frequency and duty cycle. The AC signal is applied to the tank circuit to create an inductive field for powering the secondary. The secondary communicates feedback about the received power back to the primary controller. The power transfer efficiency may be optimized by maintaining the operating frequency substantially at resonance, and the amount of power transferred may be controlled by adjusting the duty cycle.
Owner:PHILIPS IP VENTURES BV

Led lighting system

A lighting system has an array (100) of at least one light-emitting solid-state element such as a light-emitting diode (LED) or a laser diode. A voltage source (10), which may supply either alternating or direct current, energizes the array. Array state circuitry (125; Q2, R2), electrically connected in series with the array (100), senses at least one state of the array, such as the amount of current passing through the array, or temperature. Secondary circuitry (127; R1, Q1; 200, 201, 202; 200, R4, Q1; 126, 127) is connected in parallel with the array (100). A switching component (Q1; Q1, Q3; 202) adjusts the current passing through the secondary circuitry in accordance with the sensed state of the array such that current through the array is maintained substantially constant. A third, parallel, excess current shunt path may also be provided, in which case so is excess current shunt circuitry, which senses current flowing in the secondary circuitry and shunts current in the secondary circuitry in excess of an excess current threshold to the excess current shunt path, whereby overflow current above a first threshold for the array (100) is shunted away from the array and excess current above a second threshold is shunted from the secondary circuits to the excess current shunt circuitry. A wide-angle mounting arrangement is also provided for the array.
Owner:NG WINNIE LAI LING

Integrated plasma chamber and inductively-coupled toroidal plasma source

A material processing apparatus having an integrated toroidal plasma source is described. The material processing apparatus includes a plasma chamber that comprises a portion of an outer surface of a process chamber. A transformer having a magnetic core surrounds a portion of the plasma chamber. The transformer has a primary winding. A solid state AC switching power supply comprising one or more switching semiconductor devices is coupled to a voltage supply and has an output that is coupled to the primary winding. The solid state AC switching power supply drives an AC current in the primary winding that induces an AC potential inside the chamber that directly forms a toroidal plasma that completes a secondary circuit of the transformer and dissociates the gas.
Owner:MKS ASTEX PROD GRP +1

Accelerated commutation for passive clamp isolated boost converters

An efficient and cost effective bidirectional DC / DC converter reduces switch voltage stress via accelerated commutation allowing use of a low-cost passive clamp circuit in boost mode. The converter includes a primary circuit, transformer and secondary circuit. The primary circuit takes the form of a “full bridge converter,” a “push-pull converter,” or an “L-type converter.”. The primary circuit may include a dissipator such as a snubber circuit or small buck converter. A secondary side of the transformer is momentarily shorted by the secondary circuit by, for example, turning on at least two switches in the secondary circuit simultaneously for a minimal calibratable period when a pair of primary circuit controllers turn off to protect the primary circuit switches from voltage spikes during switching conditions.
Owner:VIRGINIA TECH INTPROP INC

Transformer structure

The present invention discloses a transformer structure. The transformer structure comprises a first primary winding, and a first secondary circuits. The first secondary circuits comprises a filtering capacitor, a conductive Cu windings and a rectifier configured onto the printed circuit board (PCB) forming the first secondary circuits PCB winding. The first primary winding and the secondary circuits are interleaved with each other.
Owner:DELTA ELECTRONICS INC

Ground fault circuit interruptor (GFCI) device having safe contact end-of-life condition and method of detecting same in a GFCI device

A ground fault circuit interrupting device detects an end-of-life condition. A ground fault detecting circuit detects a fault condition and controllably operates a switching device to energize a circuit interrupting device. An end-of-life detecting circuit detects a failure of the circuit interrupting device to open after detection of the fault condition, and activates a secondary circuit to energize the circuit interrupting device.
Owner:HUBBELL INC

Soft transition converter

The present invention is a circuit and method for reducing switching and reverse recovery losses in the output rectifiers while creating zero voltage switching conditions for the primary switchers. There are described two output configurations, one employing a soft commutation inductor element a bridge rectifier and a output filter capacitor, the second using a soft commutation inductor element a rectification-filtering bridge composed by two capacitors and two capacitors. Both secondary circuits can be driven by three primary circuits. A first circuit is a full bridge with phase shift control, and a second circuit is a half bridge topology with an additional bydirectional switch which achieves two goals, on to get soft switching commutation across all the primary switches, the second to create the right waveforms in the secondary suitable with the claims in this invention. The third topology is a phase shifted two transistors forward. The circuits claimed in this invention can provide soft commutation across the primary switching elements and secondary rectifier means, clamping the voltage across the rectifiers to the output voltage eliminating the need for snubbers circuits both in primary and the secondary section.
Owner:DELTA ENERGY SYST SWITZERLAND

Inductively-coupled torodial plasma source

Apparatus for dissociating gases includes a plasma chamber comprising a gas. A first transformer having a first magnetic core surrounds a first portion of the plasma chamber and has a first primary winding. A second transformer having a second magnetic core surrounds a second portion of the plasma chamber and has a second primary winding. A first solid state AC switching power supply including one or more switching semiconductor devices is coupled to a first voltage supply and has a first output that is coupled to the first primary winding. A second solid state AC switching power supply including one or more switching semiconductor devices is coupled to a second voltage supply and has a second output that is coupled to the second primary winding. The first solid state AC switching power supply drives a first AC current in the first primary winding. The second solid state AC switching power supply drives a second AC current in the second primary winding. The first AC current and the second AC current induce a combined AC potential inside the plasma chamber that directly forms a toroidal plasma that completes a secondary circuit of the transformer and that dissociates the gas.
Owner:MKS INSTR INC

Buffering energy storage systems for reduced grid and vehicle battery stress for in-motion wireless power transfer systems

An energy buffer including an electrochemical capacitor can be added to the primary circuit and / or to the secondary circuit of in-motion wireless power transfer system. The energy buffer(s) can smoothen the power delivered by the power grid and captured by a vehicle passing over an array of transmit coils through in-motion wireless power transfer. The reduction in the transient power transfer can reduce the peak current that flows through various components of the in-motion wireless power transfer system including a vehicle battery on the vehicle, and prolong the life of the in-motion wireless power transfer system.
Owner:UT BATTELLE LLC

Power supply unit

InactiveUS20050168189A1Idle losses are sharply reduced or completely eliminatedLow costBatteries circuit arrangementsElectric powerEngineeringSecondary circuit
A charger (LNT) for a battery-fed electrical / electronic device (HAN), with an electrically isolating transformer (TRA), which can be fed at its primary circuit and of which the secondary circuit features a converter / rectifier (GLR) to supply a charge voltage for the battery (AKU) of the device, where charger and device can be connected via a plug-in electrical interface (SSS), and. when the connection is established to the plug-in interface (SSS) a switch-on signal (se) can be derived from the residual voltage of the battery (AKU), which can be forwarded via an isolating interface (ISS) from the secondary circuit (SES) to the primary circuit (PRS) to activate the charger (LNT).
Owner:SIEMENS AG OESTERR

Image pickup system

To provide an image pickup system having CCDs 25 driven at different frequencies respectively which can drive each CCD 25 with a predetermined frequency if a detachable camera head (or electronic endoscope) 28 is used and also can process a signal processing clock of a video processing circuit 29 with one type of clock. A drive signal of the predetermined frequency supplied to the CCD is produced via a generating circuit CXO 155 in the video processing circuit 29, a frequency dividing circuit 132 and a timing generator (T.G.) 131. A CCD signal outputted from the CCD 25 is inputted to a line memory 139 in a floating circuit 135. As a writing clock (WCK) of the line memory 139, the one which is divided in the frequency dividing circuit 132 to a frequency in accordance with the CCD 25 to be used is used, and as a reading clock (RCK), the one of one type of frequency is used without regard to the CCD 25 to be used. Hence, it is possible to perform the signal processing of a secondary circuit 136 of the line memory 139 and following ones always with a common generating clock.
Owner:OLYMPUS CORP

Inverter Circuit and Method for Operating the Inverter Circuit

An inverter circuit having a primary circuit with a first choke for periodically connecting a primary winding to a DC voltage present at an input of the inverter circuit, a secondary circuit with a secondary winding, the secondary winding arranged in series with a first capacitor and connected via a full bridge consisting of four switching elements to a AC voltage present at an output of the inverter circuit via a second choke, and a transformer, wherein the primary circuit and the secondary circuit are electrically isolated by the transformer.
Owner:SIEMENS AG

Triple voltage DC-to-DC converter and method

A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.
Owner:UT BATTELLE LLC

Multiphase inductive power supply system

A multiphase inductive power supply wirelessly transmits power in multiple phases. A primary circuit energizes multiple tank circuits in an out of phase relationship. A secondary circuit receives the power and recombines the power. The amount of energy in each phase is reduced compared to transferring the same amount of power using a single phase inductive power supply.
Owner:PHILIPS IP VENTURES BV

Method for testing electric secondary AC loop

The invention relates to an electric secondary AC circuit detection method which comprises the following steps: before a power plant machine set is started, a low-voltage short-circuit point or a short-circuit bogie is input; three-phase 380 V voltage is added at the high-voltage side of a booster station to form a circuit by means of the impedance of a transformer and a generator; current amplitude and phase are measured through a current detecting apparatus to check polarity and transformation ratio in advance; all current protective directions such as generator differential motion are measured. When a neutral point is not connected, a short-circuit point is made at a high plant transformer low-voltage side, and the three-phase 380 V voltage is added at the neutral point of the generator, thereby realizing overall checkup of a generator AC circuit; then, the three-phase 380 V voltage is converted into one-phase voltage or two-phase voltage to carry out overall checkup of a zero sequence circuit. The detection method can check all CT and PT circuits of a generation-transformer group before power transmission; moreover, all protection directions of the generation-transformer group are checked in advance, thereby saving time and fuel oil along with economical efficiency, environmental protection and safety. The electric secondary AC circuit detection method can check secondary circuits such as the transformer and the bus differential protection of a transformer substation.
Owner:ELECTRIC POWER RESEARCH INSTITUTE OF STATE GRID SHANDONG ELECTRIC POWER COMPANY +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products