Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2429 results about "Inductive coupling" patented technology

In electrical engineering, two conductors are said to be inductively coupled or magnetically coupled when they are configured such that a change in current through one wire induces a voltage across the ends of the other wire through electromagnetic induction. A changing current through the first wire creates a changing magnetic field around it by Ampere's circuital law. The changing magnetic field induces an electromotive force (EMF or voltage) in the second wire by Faraday's law of induction. The amount of inductive coupling between two conductors is measured by their mutual inductance.

Device for supplying an electro-pen with electrical energy

The invention relates to a device for supplying electrical energy to an electro-pen with an electric drive unit for driving a tool. The device comprises a console with an energy supply unit having an accumulator for supplying the electrical drive unit with electrical energy. The console may be configure to be sterilized by steam having a housing and electrical components that are sealed liquid-tight. The accumulator may include a sterile covering for sterile introduction into the console. A coupling between the console and the electro-pen carries the supply of electrical energy from the console to the electro-pen. The coupling may be an electrical contact in the form of a sterilizable connector or an inductive coupling. The console may be configured to store energy and is thus mobile, or the console may include a connection for connecting to a mains or external power supply for charging the accumulator. The console may include a switch-mode power supply for charging the accumulator. The console may include a holder for receiving and charging the electro-pen. The electro-pen includes an electrical storage device and a coupling for receiving the electrical energy supply from the accumulator. The holder may include an electrical coupling between the console and the electro-pen in which at least two electrical contacts and at least one transformer are disposed about each the holder and the electro-pen. Alternatively, the holder may include an inductive coupling in which at least one transformer having at least one coil is disposed about each the holder and the electro-pen.
Owner:SYNTHES USA

Method for assembling, identifying and controlling a powered surgical tool assembly assembled from multiple components

A surgical tool system comprising a control console, a powered surgical device, an intermediate attachment removably connected to the surgical device and a cutting accessory removably connected to the intermediate attachment. Internal to the cutting accessory is an identification device that contains data specific to the operation of the accessory. The control console, through the transfer of signals through the powered surgical device and the intermediate attachment reads the data in the cutting accessory. Based on these data, the control console selectively actuates the powered surgical device. In some versions of the invention, the identification device may be an RFID chip. Signals are exchanged between the surgical device and the intermediate attachment and between the intermediate attachment and cutting accessory by inductive coupling. An identification device internal to the intermediate attachment provides the control console with data describing the intermediate attachment.
Owner:STRYKER CORP

Surgical instrument including inductively coupled accessory

A surgical instrument system includes a surgical instrument, a power supply, and an accessory. The surgical instrument has a first induction device positioned therein. The accessory is selectively operably couplable to the surgical instrument. The accessory includes a second induction device that is inductively coupled with the first induction device when the accessory is operably coupled to the surgical instrument such that the power supply provides power to the accessory.
Owner:TYCO HEALTHCARE GRP LP

Systems and methods for modulation of circulatory perfusion by electrical and/or drug stimulation

One or more implantable system control units (SCU) apply one or more stimulating drugs and / or electrical pulses to one or more predetermined areas affecting circulatory perfusion. The SCU preferably includes a programmable memory for storing data and / or control parameters, and preferably uses a power source / storage device, such as a rechargeable battery. If necessary, periodic recharging of such a power source / storage device is accomplished, for example, by inductive coupling with an external appliance. The SCU provides a means of stimulating a nerve(s) or other tissue with electrical and / or infusion pulses when desired, without the need for external appliances during the stimulation session. When necessary, external appliances are used for the transmission of data to and / or from the SCU(s) and / or for the transmission of power. In a preferred embodiment, the system is capable of open- and closed-loop operation. In closed-loop operation, at least one SCU includes a sensor, and the sensed condition is used to adjust electrical and / or drug stimulation parameters.
Owner:BOSTON SCI NEUROMODULATION CORP

Fully implantable microstimulator for spinal cord stimulation as a therapy for chronic pain

An implantable stimulator(s), small enough to be located near or within an area of the spine responsible for sensations in a region experiencing chronic pain uses a power source / storage device, such as a rechargeable battery. Periodic recharging of such a power source / storage device is accomplished, for example, by inductive coupling with an external appliance. The small stimulator provides a means of stimulating a nerve(s) or other tissue when desired, without the need for external appliances during the stimulation session. When necessary, external appliances are used for the transmission of data to and / or from the stimulator(s) and for the transmission of power, it necessary. In a preferred embodiment, the system is capable of open- and closed-loop operation. In closed-loop operation, at least one implant includes at least one sensor, and the sensed condition is used to adjust stimulation parameters.
Owner:BOSTON SCI NEUROMODULATION CORP

Soldier system wireless power and data transmission

An inductively coupled power and data transmission system include a main power source, apparel having an electrical conductor in electrical communication with the main power source, the apparel having a first inductively couplable power and data transmission sub-system to regulate power to the primary coil or coils and transmission of power and data by the primary coil or coils and reception of data by the primary coil or coils, and an independent device having a second inductively couplable power and data transmission sub-system so as to regulate reception of power and data by the secondary coil or coils and transmission of data from a secondary processor by the secondary coil or coils. The first and second primary coils transfer said power and data during inductive coupling, at electromagnetic radiation frequencies, between the first primary coil or coils and the secondary coil or coils.
Owner:CYNETIC DESIGNS

Inductive powering surface for powering portable devices

An inductive powering device provides power to a portable device via inductive coupling between primary coils in the surface of the powering device and a secondary coil in the portable device. The portable device includes a passive locator device, such as an RFID device, to allow the primary coils of the inductive powering surface to detect the presence and location of the secondary coil, and only primary coils adjacent the secondary coil are energized for power transfer. A cost-effective driving configuration that arranges the primary coils into a matrix with drive circuits switchably connected to the row and columns is used to energize the primary coils.
Owner:MICROSOFT TECH LICENSING LLC

Contactless Battery Charging Apparel

InactiveUS20090218884A1Large battery powerReduce peripheral device power requirementDc network circuit arrangementsBatteries circuit arrangementsBattery chargeInductance
A sequential power transmission between a portable user-carried battery and first and second independent accessories. At least one primary inductive coupling coil is mounted on an article of apparel worn by the user, so as to place a primary coil adjacent a first intermediary inductive coupling coil on the first independent accessory. The energizing of the first intermediary coil energizes a second intermediary coil on the first independent accessory. The second intermediary coil, when energized, energizes a secondary coil on the second independent accessory for powering the use, including the charging of the batteries of that accessory.
Owner:CYNETIC DESIGNS

Coil configurations for inductive power transer

An inductive power supply system in which the receiving unit includes a secondary coil and a plurality of resonating circuits with different characteristics. Each of the resonating circuits may include a resonating coil and a resonating capacitor. The resonating coils may be inductively coupled to the secondary coil so that energy may be transferred from one or more of the resonating coils to said receiving unit. The plurality of resonating circuits are configured to provide improved power transfer efficiency or performance at different distances between the primary coil and secondary coil. The present invention may also provide a method for tuning the wireless power system including the general steps of measuring an operating characteristic in the primary unit, measuring an operating characteristic in the receiver unit and tuning one or more of the components in the primary unit and the secondary unit based on a comparison of the two measurements.
Owner:PHILIPS IP VENTURES BV

Inductively coupled ballast circuit

A ballast circuit is disclosed for inductively providing power to a load. The ballast circuit includes an oscillator, a driver, a switching circuit, a resonant tank circuit and a current sensing circuit. The current sensing circuit provides a current feedback signal to the oscillator that is representative of the current in the resonant tank circuit. The current feedback signal drives the frequency of the ballast circuit causing the ballast circuit to seek resonance. The ballast circuit preferably includes a current limit circuit that is inductively coupled to the resonant tank circuit. The current limit circuit disables the ballast circuit when the current in the ballast circuit exceeds a predetermined threshold or falls outside a predetermined range.
Owner:PHILIPS IP VENTURES BV

System and method for selective transfer of radio frequency power

A system and method is provided for the inductive transfer of electric power between a substantially flat primary surface and a multitude of secondary devices in such a way that the power transfer is localized to the vicinities of individual device coils. The contact free power transfer does not require precise physical alignment between the primary surface and the secondary device and can allow the secondary device or devices to be placed anywhere and in arbitrary orientation with respect to the primary surface. Such power transfer is realized without the need of complex high frequency power switching network to turn the individual primary coils on or off and is completely scalable to almost arbitrary size. The local anti-resonance architecture of the primary device will block primary current from flowing when no secondary device or devices are in proximity to the local RF power network. The presence of a tuned secondary device detunes the local anti-resonance on the primary surface; thereby enable the RF power to be transferred from the local primary coils to the secondary device. The uniformity of the inductive coupling between the active primary surface and the secondary devices is improved with a novel multi-pole driving technique which produces an apparent traveling wave pattern across the primary surface.
Owner:MOBILEWISE

Inductively coupled ballast circuit

A ballast circuit is disclosed for inductively providing power to a load. The ballast circuit includes an oscillator, a driver, a switching circuit, a resonant tank circuit and a current sensing circuit. The current sensing circuit provides a current feedback signal to the oscillator that is representative of the current in the resonant tank circuit. The current feedback signal drives the frequency of the ballast circuit causing the ballast circuit to seek resonance. The ballast circuit preferably includes a current limit circuit that is inductively coupled to the resonant tank circuit. The current limit circuit disables the ballast circuit when the current in the ballast circuit exceeds a predetermined threshold or falls outside a predetermined range.
Owner:PHILIPS IP VENTURES BV

Method and apparatus for providing inductive coupling and decoupling of high-frequency, high-bandwidth data signals directly on and off of a high voltage power line

InactiveUS6950567B2Preserve signal to noise ratio for signalPreserve signal to noise ratioElectric signal transmission systemsInterconnection arrangementsHigh bandwidthInductive coupling
The present invention is drawn to an electrically “closed” method and apparatus for transmitting and receiving data signals over a high voltage power line. Inductive coupling is employed for coupling and decoupling the data signal directly on to and off of a single power line wire. An exemplary device includes a high frequency inductive coupling toroid for data signals, a second (50-60 Hz) inductive coupling toroid for providing power, signal conditioning electronics for the receive and transmit signal, a fiber optics interface for electrical isolation purposes, and a weather-proof enclosure. In a preferred embodiment, the toroids are hinged for ease of installation on a power line. A pair of such couplings on either side of a fiber-optic isolator can be used to bridge transformers.
Owner:CURRENT TECH

Inductively coupled ballast circuit

InactiveUS20050093475A1Small region of changeInefficient power transferWater treatment parameter controlWater/sewage treatment by irradiationCurrent limitingElectrical ballast
A ballast circuit is disclosed for inductively providing power to a load. The ballast circuit includes an oscillator, a driver, a switching circuit, a resonant tank circuit and a current sensing circuit. The current sensing circuit provides a current feedback signal to the oscillator that is representative of the current in the resonant tank circuit. The current feedback signal drives the frequency of the ballast circuit causing the ballast circuit to seek resonance. The ballast circuit preferably includes a current limit circuit that is inductively coupled to the resonant tank circuit. The current limit circuit disables the ballast circuit when the current in the ballast circuit exceeds a predetermined threshold or falls outside a predetermined range.
Owner:PHILIPS IP VENTURES BV

Near field RF communicators and near field communications enabled devices

A near field RF communicator has: an antenna operable to generate an RF signal to enable inductive coupling via the magnetic field of the RF signal between the antenna and another near field RF communicator or RF transponder in near field range; and a signal generator operable to generate a multi-level digital sine wave drive signal to drive the antenna to generate the RF signal, wherein the signal generator comprises a selector operable to select one or more digital sequences to provide one or more digital signals from which the digital sine wave drive signal is generated.
Owner:NXP USA INC

Modular wireless headset system for hands free talking

A wireless headset system for use with, e.g. mobile phones, and which incorporates a wireless headset which communicates with a base station via magnetic inductive coupling or radio frequency signals to dial and send or receive calls via a conventional phone, e.g. a mobile phone, attached to the base station. In one embodiment, the mobile phone is carried in the base station which is worn by the user.
Owner:ADVANCED MOBILE SOLUTIONS INC

Integrated circuit with millimeter wave and inductive coupling and methods for use therewith

A circuit includes a plurality of integrated circuits or dies having corresponding circuits, the plurality of integrated circuits or dies include a first plurality of integrated circuits or dies having corresponding millimeter wave interfaces and a second plurality of integrated circuits or dies having corresponding inductive interfaces. The first plurality of integrated circuits or dies communicate first signals therebetween via the corresponding millimeter wave interfaces and the second plurality of integrated circuits or dies communicate second signals therebetween via the corresponding inductive interfaces.
Owner:AVAGO TECH INT SALES PTE LTD

Surgical instrument with wireless communication between control unit and sensor transponders

Surgical instrument with wireless communication between control unit and sensor transponders. The surgical instrument (10), such as an endoscopic or laparoscopic instrument, comprising, according to various embodiments, an end effector (12) comprising at least one sensor transponder (368). The surgical instrument also comprises a shaft (8) having a distal end connected to the end effector (12) and a handle (6) connected to a proximate end of the shaft (8). The handle (6) comprises a control unit (300) in communication with the sensor transponder (368) via at least one inductive coupling (302,320,324). The surgical instrument (10) may be a power assist motorized device including a battery for powering (at least partially) the surgical instrument (10) during use. The surgical instrument (10) may be adapted to provide user feedback regarding the load being experienced by the end effector.
Owner:ETHICON ENDO SURGERY INC

Contactless battery charging apparel

A sequential power transmission between a portable user-carried battery and first and second independent accessories. At least one primary inductive coupling coil is mounted on an article of apparel worn by the user, so as to place a primary coil adjacent a first intermediary inductive coupling coil on the first independent accessory. The energizing of the first intermediary coil energizes a second intermediary coil on the first independent accessory. The second intermediary coil, when energized, energizes a secondary coil on the second independent accessory for powering the use, including the charging of the batteries of that accessory.
Owner:CYNETIC DESIGNS

Fully implantable neurostimulator for autonomic nerve fiber stimulation as a therapy for urinary and bowel dysfunction

InactiveUS7054689B1Reduce excitementIncrease excitementElectrotherapyAutonomic nerve fibersMedicine
An implantable stimulator(s), small enough to be located near or adjacent to an autonomic nerve(s) innervating urinary and / or gastrointestinal structures, uses a power source / storage device, such as a rechargeable battery. Periodic recharging of such a power source / storage device is accomplished, for example, by inductive coupling with an external appliance. The small stimulator provides a means of stimulating a nerve(s) or other tissue when desired, without the need for external appliances during the stimulation session. When necessary, external appliances are used for the transmission of data to and / or from the stimulator(s) and for the transmission of power, if necessary. In a preferred embodiment, the system is capable of open- and closed-loop operation. In closed-loop operation, at least one implant includes at least one sensor, and the sensed condition is used to adjust stimulation parameters.
Owner:BOSTON SCI NEUROMODULATION CORP

Microstrip antenna for RFID device

Microstrip patch antenna (46), feed structure (48), and matching circuit (50) designs for an RFID tag (10). A balanced feed design using balanced feeds coupled by a shorting stub (56) to create a virtual short between the two feeds so as to eliminate the need for physically connecting substrate to the ground plane. A dual feed structure design using a four-terminal IC can be connected to two antennas (46a,46b) resonating at different frequencies so as to provide directional and polarization diversity. A combined near / field-far / field design using a microstrip antenna providing electromagnetic coupling for far-field operation, and a looping matching circuit providing inductive coupling for near-field operation. A dual-antenna design using first and second microstrip antennas providing directional diversity when affixed to a cylindrical or conical object, and a protective superstrate (66). An annual antenna (46c) design for application to the top of a metal cylinder around a stem.
Owner:UNIVERSITY OF KANSAS

Vehicle seat inductive charger and data transmitter

A vehicle seat inductive charger and data transmitter system includes: a vehicle seat having a first inductive coil, apparel having therein a second inductive coil, a first charging and controlling circuit cooperating with the first inductive coil, and adapted to energize and modulate the first inductive coil to transfer power and data to the second inductive coil solely via inductive coupling between the first and second inductive coils, a second charging and control circuit on the apparel cooperating with the second inductive coil, at least one main battery adapted for wearing by the user, where the main battery is adapted for charging by the second circuit upon the inductive coupling of the first and second inductive coils when energized.
Owner:SOAR ROGER J

Methods for implanting a spinal cord stimulator

InactiveUS20050119713A1Decrease excitement of targeted nerve rootsIncrease the areaElectrotherapyElectric power transmissionSpinal column
Methods for implanting spinal cord stimulators are provided, including implanting at least one electrode in an anterolateral area of the spine. Stimulation provided by the stimulator(s) may be used to treat patients with chronic pain. The stimulator(s) use a power source / storage device, such as a rechargeable battery. Periodic recharging of such a power source / storage device is accomplished, for example, by inductive coupling with an external applience. The stimulators provide means of stimulating a nerve(s) or other tissue when desired, without the need for external appliances during the stimulation session. When necessary, external appliances are used for the transmission of data to and / or from the stimulator(s) and for the transmission of power, if necessary. In a preferred embodiment, the system is capable of open- and closed-loop operation. In closed-loop operation, at least one implant includes at least one sensor, and the sensed condition is used to adjust stimulation parameters.
Owner:BOSTON SCI NEUROMODULATION CORP

Implantable wireless power system

A wireless power system capable of transmitting power through the skin without percutaneous wires over distances ranging from a few inches to several feet includes an external transmitting coil assembly and a receiving coil assembly. The transmitting coil assembly includes an excitation coil and transmitting resonant coil which are inductively coupled to each other. The receiving coil assembly includes a receiving resonant coil and a power pick-up coil which are also inductively coupled to each other. A high frequency AC power input, such as radio frequency (RF), supplied to the excitation coil inductively causes the transmitting resonant coil to resonate resulting in a local time varying magnetic field. The transmitting and receiving resonant coils are constructed as to have closely matched or identical resonant frequencies so that the magnetic field produced by the transmitting resonant coil is able to cause the receiving resonant coil to resonate strongly also, even when the distance between the two resonant coils greatly exceeds the largest dimension of either coil. The receiving resonant coil then creates its own local time varying magnetic field which inductively produces a voltage in a power pick-up coil to provide power to an active implantable medical device or implantable rechargeable battery.
Owner:CORVION INC

Methods and apparatus for control of inductively coupled power transfer systems

A power pick-up for an Inductively Coupled Power Transfer (ICPT) system is provided having a resonant pick up circuit. The natural frequency of the pick-up circuit may be varied by controlling the conductance or capacitance of a variable reactive in the resonant circuit. The load being supplied by the pick-up circuit is sensed, and the effective capacitance or inductance of the variable reactive component is controlled to vary the natural resonant frequency of the pick-up circuit to thereby control the power flow into the pick-up to satisfy the power required by the load.
Owner:AUCKLAND UNISERVICES LTD

System and method for inductively charging a battery

An inductive charging system for recharging a battery. The system includes a charger circuit and a secondary circuit. The secondary circuit includes a feedback mechanism to provide feedback to the charger circuit through the inductive coupling of the primary coil and the secondary coil. The charger circuit includes a frequency control mechanism for controlling the frequency of the power applied to the primary coil at least partly in response to the feedback from the feedback mechanism.
Owner:PHILIPS IP VENTURES BV

Foreign Object Detection in Inductive Coupled Devices

A primary device for inductive power transfer to a secondary device is disclosed. The primary device includes a primary coil, the primary device being configured to (i) operate in a first mode during which the primary coil transfers power through inductive coupling to the secondary device, and (ii) operate in a second mode during which a foreign object is detected. The primary device further includes a primary controller configured to operate the primary coil (i) using a first frequency during the first mode, and (ii) using a second frequency during the second mode. A method to detect a foreign object which is in proximity of an inductively coupled environment of a primary device is also disclosed.
Owner:ROBERT BOSCH GMBH

Antenna using inductively coupled feeding method, RFID tag using the same and antenna impedence matching method thereof

Provided are an antenna using an inductively coupled feeding method, a Radio Frequency Identification (RFID) tag thereof, and an antenna impedance matching method thereof. The antenna includes a resonator for determining a resonance frequency of the antenna and a feeder for providing an RF signal to an element connected to the antenna. An RFID tag includes an antenna which receives an RF signal from the RFID reader, an RF front-end which rectifies and detects the RF signal, and a signal processor which is connected to the RF front-end. Particularly, the antenna includes a resonator for determining a resonance frequency of an antenna and a feeder for providing the RF signal to the RF front-end, wherein mutual inductive coupling between the resonator and the feeder is performed.
Owner:ELECTRONICS & TELECOMM RES INST

Low-loss inductive couplers for use in wired pipe strings

A first flux-loop inductive coupler element electrically couples with a second flux-loop inductive coupler element. The first flux-loop inductive coupler element comprises a first ring-like core having high magnetic permeability and a conical-section annular first face transverse to the plane of the first core. The first face has a first annular groove separating a first conical-section larger-diameter face and a first conical-section smaller-diameter face. A first coil is wound within the annular groove. The first and second cores form a low-reluctance closed magnetic path around the first coil and a second coil of the second flux-loop inductive coupler element.A first current-loop inductive coupler element electrically couples with a second current-loop inductive coupler element. The first current-loop inductive coupler element has a first high-conductivity, low-permeability shaped belt of a first end of a first pipe joint, a first ring-like core located at the first end, and a first electrically conductive coil wound about the first ring-like core. The first high-conductivity, low-permeability shaped belt partially encloses the first coil. It is shaped to cooperate with the second high-conductivity, low-permeability shaped belt of an adjacent second pipe joint having a second electrically conductive coil and a second high-conductivity, low-permeability shaped belt to create a closed toroidal electrical conducting path. The closed toroidal electrical conducting path encloses the first coil and the second coil when the first and second pipe joints are mated.
Owner:SCHLUMBERGER TECH CORP

Externally activated neuro-implant which directly transmits therapeutic signals

An externally powered and controlled neuro-implant system for transmission of stimulating therapeutic signals to an implantable electrode. The system basically consists of two coils, one external active coil and one internal passive coil each housed in a ferrite pot core which enhances inductive coupling and minimizes the coils in size, thus facilitating the construction of a passive coils array to enable the usage of multi-contact electrodes for swithching of the electrical stimulation between a number of sites along the target neurons. The implanted part of the system, comprising only a coil housed in a ferrite pot core, is fully passive. The passive coil, that is implanted under the skin, is connected with the electrode placed in neighbouring of the target neural tissue via implanted thin medical grade wires. The active coil is placed on the skin overlying the passive coil. Therapeutic signals produced by the transmitter outside the body are transmitted through the coils by inductive coupling across the skin of the patient.
Owner:TULGAR METIN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products