Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

24762results about "Circuit arrangements" patented technology

Method and apparatus for improved building automation

An improved building automation system is provided which is modular in design thus minimizing the amount of instruction necessary to affect control of a particular building system. A relatively small set of interprocess control commands define an interprocess control protocol which is utilized in relatively high level scripts and control applications. The improved building automation system operates to translate control instructions in one particular control protocol to control instructions in a second control protocol. A text parsing program routes interprocess communication commands between modular communication programs to affect control over the automated building systems. The text parsing program includes executable instructions which allow for conditional communication of interprocess control commands depending upon system events.
Owner:INTELIHOME +2

Apparatus for energizing a remote station and related method

Apparatus for remote interaction with an object of interest includes a remote station for obtaining information from the object of interest, a base station for transmitting energy in space to and communicating with the remote station and the remote station having conversion means for energizing the remote station responsive to receipt of the transmitted energy. The energy may be of any suitable type including RF power, light, acoustic, magnetic energy or other form of space transmitted or "radiant" energy. The remote station does not have to contain a source of stored energy or a wired connection to a source of energy. The remote station receives the energy transmission and data transmission from the base station and transmits data to the base station. Microprocessor controllers may be provided for the base station and the remote station. The remote station may receive information from sensors and through one or more transponders sequentially communicate information to the base station. An associated method is provided. In other embodiments which are suited for use in miniaturized electronic chip systems, power enhancement and increased effective antenna size are provided. An electronic article containing a microchip having at least one antenna structured to communicate with an antenna remotely disposed with respect to the microchip formed therein and an associated method are provided.
Owner:PITTSBURGH UNIV OF

Method and apparatus for delivering energy to an electrical or electronic device via a wireless link

A method and apparatus for providing power to e.g., a chargeable device via a radio frequency link. In one aspect, a method of providing power to a chargeable device via radio frequency link comprises generating a substantially un-modulated signal. The method further comprises radiating a substantially un-modulated radio frequency (RF) signal to the chargeable device via a transmit antenna based on the substantially un-modulated signal. The method further comprises powering or charging the chargeable device with power delivered by the substantially un-modulated RF signal.
Owner:QUALCOMM INC

Wireless non-radiative energy transfer

The electromagnetic energy transfer device includes a first resonator structure receiving energy from an external power supply. The first resonator structure has a first Q-factor. A second resonator structure is positioned distal from the first resonator structure, and supplies useful working power to an external load. The second resonator structure has a second Q-factor. The distance between the two resonators can be larger than the characteristic size of each resonator. Non-radiative energy transfer between the first resonator structure and the second resonator structure is mediated through coupling of their resonant-field evanescent tails.
Owner:MASSACHUSETTS INST OF TECH

Inductive power supply system with multiple coil primary

An inductive power supply including multiple tank circuits and a controller for selecting at least one of the tank circuits in order to wirelessly transfer power based on received power demand information. In addition, a magnet may be used to align multiple remote devices with the inductive power supply. In one embodiment, different communication systems are employed depending on which coil is being used to transfer wireless power.
Owner:PHILIPS IP VENTURES BV

Power Transmission Device, Power Transmission Method, Program, Power Receiving Device and Power Transfer System

There is provided a power transmission device including a communication part that performs communication with an external power transmission device that transmits power, a power transmission part that transmits power to a power receiving device that receives the transmitted power in a non-contact manner, a determination part that determines whether power can be transmitted, based on external power transmission information received by the communication part indicating a start of power transmission by the external power transmission device, and a power transmission control part that controls the power transmission part to selectively transmit power based on a determination result from the determination part.
Owner:SONY CORP

Wireless power component selection

A method includes providing a source resonator including a first conductive loop in parallel with a first capacitive element and in series with a first adjustable element the source resonator having a source target impedance, providing a plurality of device resonators each including a conductive loop and having a device target impedance, connecting, for each of the plurality of device resonators, a resistor corresponding to the device target impedance in series with the conductive loop of each of the plurality of device resonators, connecting a network analyzer in series with the first conductive loop and adjusting at least one of the first capacitive element and the first adjustable element until a measured impedance of the source resonator is within a predetermined range of the source target impedance.
Owner:WITRICITY CORP

Power Transmitting Apparatus, Power Transmission Method, Program, and Power Transmission System

There is provided a power transmitting apparatus including a power transmission side communication unit for communicating with one or more power receiving apparatus for receiving transmitted power; a power transmission unit for transmitting power to the one or more power receiving apparatus in a non-contact manner; an allocating unit for dividing transmission of power from the power transmission unit to the power receiving apparatus to a plurality of dividing periods for every predetermined period, and allocating the one or more power receiving apparatus to one of the dividing periods; and a power transmission control unit for selectively transmitting power to the one or more power receiving apparatus for every dividing period based on the allocation result in the allocating unit.
Owner:SONY CORP

Wireless non-radiative energy transfer

The electromagnetic energy transfer device includes a first resonator structure receiving energy from an external power supply. The first resonator structure has a first Q-factor. A second resonator structure is positioned distal from the first resonator structure, and supplies useful working power to an external load. The second resonator structure has a second Q-factor. The distance between the two resonators can be larger than the characteristic size of each resonator. Non-radiative energy transfer between the first resonator structure and the second resonator structure is mediated through coupling of their resonant-field evanescent tails.
Owner:MASSACHUSETTS INST OF TECH

Wireless non-radiative energy transfer

The electromagnetic energy transfer device includes a first resonator structure receiving energy from an external power supply. The first resonator structure has a first Q-factor. A second resonator structure is positioned distal from the first resonator structure, and supplies useful working power to an external load. The second resonator structure has a second Q-factor. The distance between the two resonators can be larger than the characteristic size of each resonator. Non-radiative energy transfer between the first resonator structure and the second resonator structure is mediated through coupling of their resonant-field evanescent tails.
Owner:MASSACHUSETTS INST OF TECH

Wireless power infrastructure

A wireless power infrastructure for delivering wireless power from a wireless network to mobile devices. The infrastructure includes a plurality of power transmission hubs, each hub having: a first capacitor for transmitting a signature frequency for a defined range; and a set of second capacitors, each for transmitting resonant wireless power within the defined range at a selectable frequency. A mobile device for obtaining wireless resonant the plurality of power transmission hubs is also described, and includes: a first variable capacitor for detecting a signature frequency associated with a proximately located power transmission hub; a second variable capacitor for receiving wireless resonant capacitor from the proximately located power transmission hub; and a synchronization system for setting the second variable capacitor to a frequency that is synchronized with a wireless resonant power transmission of the proximately located power transmission hub.
Owner:IBM CORP

Non-contact power transmission device

An electromagnetic resonance non-contact power transmission device includes a transmitter including a transmitter resonance element having a mechanism for discretely or continuously varying a resonant frequency, a transmitter excitation element coupled to the transmitter resonance element by electromagnetic induction, and an alternating current source for applying an alternating current at the same frequency as the resonant frequency to the transmitter excitation element, and a plurality of receivers each including a receiver resonance element having a specific resonant frequency, a receiver excitation element coupled to the receiver resonance element by electromagnetic induction, and an output circuit for outputting an electric current induced by the receiver excitation element. Electric power is transmitted selectively from the transmitter to any of the receivers having different specific resonant frequencies by changing the resonant frequency of the transmitter.
Owner:SONY CORP

Tunable wireless power architectures

Described herein are improved configurations for a wireless power transfer. The parameters of components of the wireless energy transfer system are adjusted to control the power delivered to the load at the device. The power output of the source amplifier is controlled to maintain a substantially 50% duty cycle at the rectifier of the device.
Owner:WITRICITY CORP

Apparatus for energizing a remote station and related method

Apparatus for remote interaction with an object of interest includes a remote station for obtaining information from the object of interest, a base station for transmitting energy in space to and communicating with the remote station and the remote station having a conversion device for energizing the remote station responsive to receipt of the transmitted energy. The energy may be of any suitable type including RF power, light, acoustic, magnetic energy or other form of space transmitted or "radiant" energy. The remote station does not have to contain a source of stored energy or a wired connection to a source of energy. The remote station receives the energy transmission and data transmission from the base station and transmits data to the base station. Microprocessor controllers may be provided for the base station and the remote station. The remote station may receive information from sensors and through one or more transponders sequentially communicate information to the base station. An associated method is provided.
Owner:UNIVERSITY OF PITTSBURGH +1

Wireless non-radiative energy transfer

The electromagnetic energy transfer device includes a first resonator structure receiving energy from an external power supply. The first resonator structure has a first Q-factor. A second resonator structure is positioned distal from the first resonator structure, and supplies useful working power to an external load. The second resonator structure has a second Q-factor. The distance between the two resonators can be larger than the characteristic size of each resonator. Non-radiative energy transfer between the first resonator structure and the second resonator structure is mediated through coupling of their resonant-field evanescent tails.
Owner:MASSACHUSETTS INST OF TECH

Wireless Energy Transfer System

A system for transmitting power without wires or with no more than one connection, wherein communication is provided between an unlimited number of electronic devices, or to connect these devices to an unlimited number networks that are located externally to the system to thereby enable high speed voice and data communications over a single resonant connection At least one transmitter and one receiver are utilized, which may have the same or different configurations, such that an induced oscillating electπc current, which occurs at the resonant frequency of a transmitter, induces a standing wave The standing wave is tuned and “tapped” by a receiver having a coil or set of plates and receivers that are tuned to oscillate at the same frequency or one of its harmonics and, thus, absorb an electrical current and / or signals at the receiver
Owner:GOVERNING DYNAMICS LLC

User interface for monitoring remote devices

A system for monitoring utility consumption information, the system including a memory to store utility consumption information and a processor configured by the memory to provide a user interface to enable an user to view the utility consumption information in a time-segmented fashion.
Owner:LANDISGYR TECH

Inductively coupled ballast circuit

A ballast circuit is disclosed for inductively providing power to a load. The ballast circuit includes an oscillator, a driver, a switching circuit, a resonant tank circuit and a current sensing circuit. The current sensing circuit provides a current feedback signal to the oscillator that is representative of the current in the resonant tank circuit. The current feedback signal drives the frequency of the ballast circuit causing the ballast circuit to seek resonance. The ballast circuit preferably includes a current limit circuit that is inductively coupled to the resonant tank circuit. The current limit circuit disables the ballast circuit when the current in the ballast circuit exceeds a predetermined threshold or falls outside a predetermined range.
Owner:PHILIPS IP VENTURES BV

Implementation of an RF power transmitter and network

Disclosed is a power transmission system for wirelessly powering a power harvesting device. The system comprises at least one RF power transmitter. The system includes an AC power grid, or a DC grid to which the transmitter is electrically connected. Also disclosed is an adjustable RF power transmitter for powering wirelessly an RF power harvesting- device. Also disclosed is a power transmission system for wirelessly powering an RF power harvesting device. The system can include a computer with an antenna or a lighting fixture or a light or a battery charging unit or a battery. Also disclosed is an apparatus for wirelessly powering a power harvesting device. Also disclosed is a method for wirelessly powering a power harvesting device.
Owner:POWERCAST

Semiconductor device and power receiving device

InactiveUS20080210762A1Deterioration of with time can be preventedCommunication distanceNear-field transmissionCircuit arrangementsSignal processing circuitsElectrical battery
An object is to provide a semiconductor device that is capable of wireless communication, such as an RFID tag, which can transmit and receive individual information without checking remaining capacity of a battery or changing batteries due to deterioration with time in the battery for a drive power supply voltage, and maintain a favorable a transmission / reception state even when electric power of an electromagnetic wave from a reader / writer is not sufficient. The semiconductor device includes a signal processing circuit, a first antenna circuit connected to the signal processing circuit, an antenna circuit group, a rectifier circuit group and a battery connected to the signal processing circuit. The first antenna circuit transmits and receives a signal for transmitting data stored in the signal processing circuit and drives a power supply circuit, and each antenna circuit of the antenna circuit group receives a signal for charging the battery and includes an antenna which has a different corresponding frequency.
Owner:SEMICON ENERGY LAB CO LTD

Tunable wireless energy transfer for medical applications

A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply includes a load associated with powering an electrically powered medical device, and a second electromagnetic resonator configured to be coupled to the load and moveable relative to the first electromagnetic resonator, wherein the second electromagnetic resonator is configured to be wirelessly coupled to the first electromagnetic resonator to provide resonant, non-radiative wireless power to the second electromagnetic resonator from the first electromagnetic resonator, and wherein the second electromagnetic resonator is configured to be tunable during system operation so as to at least one of tune the power provided to the second electromagnetic resonator and tune the power delivered to the load.
Owner:WITRICITY CORP

Power transmission method of high-power wireless induction power supply system

A power transmission method used in a high-power wireless induction power supply system consisting of a power-supplying module and a power-receiving module is disclosed. The power-supplying module regulates its output energy by means of frequency modulation and driving power adjustment, enabling the energy to be received by the power-receiving module and transmitted through a power-receiving coil array and a primary resonant capacitor and a secondary resonant capacitor of power-receiving resonance circuit, a synchronizing rectifier, a low-power voltage stabilizer, a high-frequency filter capacitor, a first power switch, a low-frequency filter capacitor and a second power switch of a filter circuit for output to an external apparatus.
Owner:FU TONG TECH

Flat panel, stationary or mobile, spatially beam-formed wireless energy delivery system

Methods and systems are provided for achieving delivery of power wirelessly using a highly beam-formed array of radio frequency (RF) transmitters as a source and a spatially beam-formed array of receivers that collect the impinged RF power and feed a multistage RF to direct current (RF-DC) conversion circuit that, for example, increases output voltage by doubling the voltage at each stage, while power delivery remains constant. One or more embodiments may provide energy wirelessly and—unlike conventional systems where the power flux density may be too low for applications where an energy density (specific energy) on the order of several mega-Joules per kilogram (MJ / Kg) is desired—may provide sufficient power flux density for many practical applications.
Owner:MOHAMADI FARROKH

Implementation of a wireless power transmitter and method

Disclosed is a device for a particular purpose. The device includes a housing. A wireless power transmitter is connected to the housing. The wireless power transmitter sends wireless power. The particular purpose is something other than sending wireless power. A method for a particular purpose.
Owner:POWERCAST

System and method for single-action energy resource scheduling and participation in energy-related securities

A system for single-action energy resource scheduling and participation in energy-related securities, comprising a communications interface executing on a network-connected server and adapted to receive information from a plurality of client user interfaces and a secure action server coupled to the communications interface, wherein the secure action server, on receiving a connection from a client user interface, assigns a unique client identifier to the client user interface and associates the unique identifier with a client account, and wherein the secure action server, on receiving a request from a client user interface, determines whether the client user interface is mapped to an authorized market participant who has enabled single-action scheduling, execution order, or participation confirmation functionality for the client user interface, and passes information to the client user interface pertaining at least to a single action needed to confirm scheduling, execution order, or participation and wherein the secure action server, on receiving indication from the communications interface that a required single action has been taken, at least updates information about the market participant who took the action, is disclosed.
Owner:CRUBTREE JASON +4

System and method for accessing ubiquitous resources in an intelligent environment

A system and method for enabling a wireless terminal to access and operate ubiquitous devices (“UDs”), such as televisions, DVD players, etc. The system comprises a server coupled to access points and UDs via a LAN or a WLAN. Each access point is associated with both a map of an associated area and an overlay indicating the location of the UDs within that area. In response to wireless terminal requests relayed by an access point, the server retrieves the map and overlay associated with the access point, and transmits that data to the terminal for display. Alternatively, a list of UDs may be transmitted. Selection of a UD from the display causes an image of the UD's control panel to be displayed, from which the device may be remotely controlled by the user. A mechanism is also provided to permit users to display maps of areas other than the one in which the user is currently located to permit remote control of UDs in such areas.
Owner:NOKIA TECHNOLOGLES OY

Wireless power transmission

Disclosed is a system for power transmission. The system includes a receiver having a receiver antenna. An RF power transmitter includes a transmitter antenna. The RF power transmitter transmits RF power. The RF power includes multiple polarization components. The receiver converts the RF power to direct current. Also disclosed is an antenna for an RF power transmission system. The antenna includes at least two antenna elements. Alternating the radiation between the at least two antenna elements produces a power transmission having components in two polarizations. Additionally disclosed is a transmitter, a receiver and a method for power transmission.
Owner:POWERCAST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products