Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2946 results about "Pulse voltage" patented technology

The pulse voltage capability ranges from 1 KV for low resistance values in the 1/4-Watt size up to 10 KV for higher resistance values in the mini 1/2-W and 1-W sizes. The output pulse voltage is equivalent to input (4.

Power supply system

A power supply system according to the present invention comprises: a primary side coil; a power transmission apparatus having a primary side circuit for feeding a pulse voltage resulted from switching a DC voltage which is obtained by rectifying and smoothing a commercial power supply to the primary side coil; a secondary side coil magnetically coupled to the primary side coil; and power reception equipment having a secondary side circuit for rectifying and smoothing voltage induced across the secondary side coil, wherein there is provided a power adjusting section for adjusting a level of power to be transmitted according to power required by the power reception equipment. The power adjusting section has, in the primary side circuit, a carrier wave oscillation circuit for supplying a carrier wave to the primary side coil, a demodulation circuit for demodulating a modulated signal transmitted from the secondary circuit and received by the primary side coil, and a power change-over section for selecting a level of power to be transmitted according to an information signal from the power reception equipment and demodulated by the demodulation circuit. The power adjusting section has, in the secondary side circuit, a modulation circuit for modulating the carrier wave fed from the carrier wave oscillation circuit and received by the secondary side coil with the information signal from the power reception equipment and transmitting the modulated signal.
Owner:SHARP KK

Power supply system

A power supply system is provided, having: a primary side coil; a power transmission apparatus having a primary side circuit for feeding a pulse voltage resulted from switching a DC voltage which is obtained by rectifying and smoothing a commercial power supply to the primary side coil; a secondary side coil magnetically coupled to the primary side coil; and power reception equipment having a secondary side circuit for rectifying and smoothing voltage induced across the secondary side coil, wherein there is provided a power adjusting section for adjusting a level of power to be transmitted according to power required by the power reception equipment. The power adjusting section has, in the primary side circuit, a carrier wave oscillation circuit for supplying a carrier wave to the primary side coil, a demodulation circuit for demodulating a modulated signal transmitted from the secondary circuit and received by the primary side coil, and a power change-over section for selecting a level of power to be transmitted according to an information signal from the power reception equipment and demodulated by the demodulation circuit. The power adjusting section has, in the secondary side circuit, a modulation circuit for modulating the carrier wave fed from the carrier wave oscillation circuit and received by the secondary side coil with the information signal from the power reception equipment and transmitting the modulated signal.
Owner:SHARP KK

Substrate processing apparatus and substrate processing method

There are provided a substrate processing apparatus and a substrate processing method realizing an effective reduction of a voltage change of a substrate on an electrode to reduce the variation of incident energy of ions entering the substrate. The substrate processing apparatus includes: a first electrode holding a substrate on a main surface of the first electrode; a second electrode facing the first electrode; a RF power source applying to the first electrode a RF voltage whose frequency is equal to or higher than 40 MHz; and a pulse voltage applying unit applying to the first electrode a pulse voltage decreasing in accordance with a lapse of time, by superimposing the pulse voltage on the RF voltage.
Owner:KK TOSHIBA +1

Process for the electrolytic deposition of metal layers

InactiveUS6099711AOptimize allocationImpairing propertyCellsElectrolysisHigh current densityMetal coating
PCT No. PCT / EP96 / 05140 Sec. 371 Date Apr. 23, 1998 Sec. 102(e) Date Apr. 23, 1998 PCT Filed Nov. 21, 1996 PCT Pub. No. WO97 / 19206 PCT Pub. Date May 29, 1997The invention relates to a method for the electrolytic deposition of metal coatings, in particular of copper coatings with certain physical-mechanical and optical properties and uniform coating thickness. According to known methods using soluble anodes and applying direct current, only uneven metal distribution can be attained on complex shaped workpieces. By using a pulse current or pulse voltage method, the problem of the coatings being of varying thickness at various places on the workpiece surfaces can indeed be reduced. However, the further problem of the geometric ratios being changed continuously during the depositing process by dissolving of the anodes is not resolved thus. This can be avoided by using insoluble anodes. In order to guarantee sufficient stability of the anodes and a bright coating even at those points on the workpiece surfaces, onto which the metal is deposited with high current density, it is essential to add compounds of an electrochemically reversible redox system to the depositing solution.
Owner:ATOTECH DEUT GMBH

Devices and methods for non-invasive capacitive electrical stimulation and their use for vagus nerve stimulation on the neck of a patient

A non-invasive electrical stimulation device shapes an elongated electric field of effect that can be oriented parallel to a long nerve, such as a vagus nerve in a patient's neck, producing a desired physiological response in the patient. The stimulator comprises a source of electrical power, at least one electrode and a continuous electrically conducting medium in which the electrode(s) are in contact. The stimulation device is configured to produce a peak pulse voltage that is sufficient to produce a physiologically effective electric field in the vicinity of a target nerve, but not to substantially stimulate other nerves and muscles that lie between the vicinity of the target nerve and patient's skin. Current is passed through the electrodes in bursts of preferably five sinusoidal pulses, wherein each pulse within a burst has a duration of preferably 200 microseconds, and bursts repeat at preferably at 15-50 bursts per second.
Owner:ELECTROCORE

Nonvolatile semiconductor memory device

A cell array is configured by arranging a plurality of electrically writable erasable nonvolatile memory cells on a semiconductor substrate. Each of the memory cells has a charge accumulation layer formed via a first gate insulating film and a gate electrode formed on the charge accumulation layer via a second gate insulating film. A control circuit controls the sequence of writing and erasing the data into and from a memory cell selected in the memory cell. In writing the data into the memory cell, a first write operation is to apply a write pulse voltage with a first step-up voltage between the gate electrode and the semiconductor substrate. A second write operation is to apply a write pulse voltage with a second step-up voltage lower than the first step-up voltage.
Owner:KK TOSHIBA

Electrostatic precipitator slow pulse generating circuit

An apparatus and method for generating slow rise-time, high voltage electrical pulses to a load, preferably using an existing transformer / rectifier set or power supply to charge an inversion or high voltage switching circuit to produce the pulsed voltage. An energy recovery circuit (100, 102) is used to return unused energy from the load (24) back to the means for producing pulsed voltage (110, 130). A load matching circuit (120) uses a blocking diode and a capacitor for charging the load. An additional blocking diode (32) inhibits load voltage discharge back through the slow pulse generating circuit. A transformer (20) can be used to step-up voltage from the inversion circuit, or high voltage switching circuit, to the load. One or more magnetic switch stages are used to transfer energy from the inversion circuit, or high voltage switching circuit, to the load matching circuit. A fire-on voltage controller (66) triggers the inversion or high voltage switching circuit.
Owner:ALPHA OMEGA POWER TECH L L C

Nonvolatile semiconductor memory device

A cell array is configured by arranging a plurality of electrically writable erasable nonvolatile memory cells on a semiconductor substrate. Each of the memory cells has a charge accumulation layer formed via a first gate insulating film and a gate electrode formed on the charge accumulation layer via a second gate insulating film. A control circuit controls the sequence of writing and erasing the data into and from a memory cell selected in the memory cell. In writing the data into the memory cell, a first write operation is to apply a write pulse voltage with a first step-up voltage between the gate electrode and the semiconductor substrate. A second write operation is to apply a write pulse voltage with a second step-up voltage lower than the first step-up voltage.
Owner:KIOXIA CORP

Battery charger for lithium based batteries

A method for charging a battery, such as a lithium based battery, which applies different charge pulses and discharge pulses to the battery, takes voltage measurements during those charge pulses, discharge pulses, and rest periods between the charge pulses and discharge pulses, and determines whether to terminate or to continue charging the battery. The full sequence of charge pulses, discharge pulses, and rest periods, includes a plurality of charge pulses (1), separated by rest periods (2) and followed by a rest period (3). This is then followed by a plurality of discharge pulses (4), separated by rest periods (5) and followed by a rest period (6). This is then followed by a plurality of extended charge pulses (7), separated by rest periods (8) and followed by a rest period (9). Then another discharge pulse (10) is applied, followed by a rest period (11). This is followed by a plurality of alternating charge pulses (13) and discharge pulses (12), separated by rest periods (13, 15) and followed by a rest period (16). Then another plurality of discharge pulses (17) is applied, separated by rest periods (18) and followed by a rest period (19). Open circuit voltage measurements taken during the rest periods, loaded circuit voltage measurements taken during the discharge pulses, and charge pulse voltage measurements taken during the charge pulses, are used to determine whether to continue or to terminate the charging of the battery.
Owner:ENREV

Switchable resistive perovskite microelectronic device with multi-layer thin film structure

ActiveUS20050151156A1Lowered pulse voltageProtection of device being damagedThyristorSemiconductor/solid-state device manufacturingElectrical resistance and conductanceMagnification
A switchable resistive device has a multi-layer thin film structure interposed between an upper conductive electrode and a lower conductive electrode. The multi-layer thin film structure comprises a perovskite layer with one buffer layer on one side of the perovskite layer, or a perovskite layer with buffer layers on both sides of the perovskite layer. Reversible resistance changes are induced in the device under applied electrical pulses. The resistance changes of the device are retained after applied electric pulses. The functions of the buffer layer(s) added to the device include magnification of the resistance switching region, reduction of the pulse voltage needed to switch the device, protection of the device from being damaged by a large pulse shock, improvement of the temperature and radiation properties, and increased stability of the device allowing for multivalued memory applications.
Owner:UNIV HOUSTON SYST

Devices and methods for non-invasive capacitive electrical stimulation and their use for vagus nerve stimulation on the neck of a patient

A non-invasive electrical stimulation device shapes an elongated electric field of effect that can be oriented parallel to a long nerve, such as a vagus nerve in a patient's neck, producing a desired physiological response in the patient. The stimulator comprises a source of electrical power, at least one electrode and a continuous electrically conducting medium in which the electrode(s) are in contact. The stimulation device is configured to produce a peak pulse voltage that is sufficient to produce a physiologically effective electric field in the vicinity of a target nerve, but not to substantially stimulate other nerves and muscles that lie between the vicinity of the target nerve and patient's skin. Current is passed through the electrodes in bursts of preferably five sinusoidal pulses, wherein each pulse within a burst has a duration of preferably 200 microseconds, and bursts repeat at preferably at 15-50 bursts per second.
Owner:ELECTROCORE

Flat fluorescent lamp with specific electrode structuring

PCT No. PCT / DE98 / 00827 Sec. 371 Date Nov. 17, 1998 Sec. 102(e) Date Nov. 17, 1998 PCT Filed Mar. 20, 1998 PCT Pub. No. WO98 / 43277 PCT Pub. Date Oct. 1, 1998A flat fluorescent lamp (1) has a discharge vessel (2) having a base plate (7), a top plate (8) and a frame (9) which are connected to one another in a gas-tight fashion by means of solder (10). Structures resembling conductor tracks function in the interior of the discharge vessel as electrodes (3-6), in the feedthrough region as feedthroughs, and in the external region as external supply leads (13; 14). Flat lamps of the most different sizes can thereby be produced simply in engineering terms and in a fashion capable of effective automation. Moreover, virtually any electrode shapes can be realized, in particular optimized with regard to a uniform luminous density with a reduced drop in luminous density towards the edges of the flat lamp. At least the anodes (5, 6) are covered in each case with a dielectric layer (15). The lamp (1) is preferably operated by means of a pulsed voltage source and serves as background lighting for LCDs, for example in monitors or driver information displays.
Owner:PATENT TREUHAND GESELLSCHAFT FUR ELECTRIC GLUEHLAMPEN MBH

Pulse-width modulated (PWM) audio power amplifier having output signal magnitude controlled pulse voltage and switching frequency

An audio switching power amplifier having an output pulse voltage selected in conformity with an indication of the output signal amplitude provides lower electromagnetic interference (EMI) in class-D amplifier implementations, in particular, in inductor-less designs. The output pulse voltage may be selected by providing multiple switching circuits, such as half or fully bridge switches, with each switching circuit connected to a different power supply. One of the switching circuits is activated by the switching controller, while the others are disabled, providing selection of the output pulse voltage. Selection of a lower pulse voltage, when the maximum voltage is not required, reduces the generated EMI. The switching frequency of the class-D amplifier may also be controlled in conformity with the output signal amplitude, so that at higher output levels a lower switching rate is selected, reducing the generated EMI.
Owner:CIRRUS LOGIC INC

Pulsed Electric Rock Drilling Apparatus with Non-Rotating Bit and Directional Control

The present invention provides for pulsed powered drilling apparatuses and methods. A drilling apparatus is provided comprising a bit having one or more sets of electrodes through which a pulsed voltage is passed through a mineral substrate to create a crushing or drilling action. The electrocrushing drilling process may have, but does not require, rotation of the bit. The electrocrushing drilling process is capable of excavating the hole out beyond the edges of the bit with or without the need of mechanical teeth.
Owner:SDG LLC

Compensation method of direct current (DC) voltage fluctuation of photovoltaic grid-connected inverter

The invention provides a compensation method of direct current (DC) voltage fluctuation of a photovoltaic grid-connected inverter, and the method can be used for improving the quality of the grid-connected current through compensating an input DC side secondary pulse voltage by adding a DC voltage pulse compensation module in a DC / AC (direction current / alternating current) high-frequency link, and eliminating a grid-connected current harmonic wave caused by the DC voltage pulse. The control performance of the system can be improved without adding a filter device and adding any extra appliance.
Owner:上海英孚特电子技术有限公司 +1

Series resonance DC/DC converter of photovoltaic system

The invention relates to a series resonance DC / DC converter of a photovoltaic system, which comprises a single-pole converter (40), a series resonance circuit (50), a high-frequency isolation transformer (16) and a rapid uncontrollable rectifier (20), wherein the single-pole converter (40) is used for converting a direct voltage (26) of a photovoltaic array (10) into a single-pole pulse voltage; the series resonance circuit (50) is used for converting the single-pole pulse voltage into a sine voltage with a fixed frequency; the high-frequency isolation transformer (16) is used for boosting and isolating as well as protecting; and the rapid uncontrollable rectifier (20) is used for rectifying the high-frequency sine voltage into a stable direct current voltage (28). The converter (100) is only provided with two switching elements, has the advantages of simple control mode and no switching loss, and can be used for boosting and stabilizing the larger photovoltaic array so as to be convenient for synchronizing through a three-phase converter or charging a storage battery.
Owner:刘闯

Device and methods for non-invasive electrical stimulation and their use for vagal nerve stimulation

A non-invasive electrical stimulation device shapes an elongated electric field of effect that can be oriented parallel to a long nerve, such as a vagus nerve in a patient's neck, producing a desired physiological response in the patient. The stimulator comprises a source of electrical power, at least one electrode and a continuous electrically conducting medium in which the electrode(s) are in contact. The stimulation device is configured to produce a peak pulse voltage that is sufficient to produce a physiologically effective electric field in the vicinity of a target nerve, but not to substantially stimulate other nerves and muscles that lie between the vicinity of the target nerve and patient's skin. Current is passed through the electrodes in bursts of preferably five sinusoidal pulses, wherein each pulse within a burst has a duration of preferably 200 microseconds, and bursts repeat at preferably at 15-50 bursts per second.
Owner:ELECTROCORE

Nonvolatile semiconductor memory device and control method thereof

A nonvolatile semiconductor memory device includes a memory array in which a plurality of memory cells are arranged in a row direction and a column direction, each of the memory cells being formed by connecting one end of a variable resistive element for storing information according to a change in electric resistance caused by an electric stress and a drain of a selection transistor to each other on a semiconductor substrate, a voltage switch circuit for switching among a program voltage, an erase voltage and a read voltage to be applied to the source line and the bit line connected to the memory cell, and a pulse voltage applying circuit. In the state where the program voltage or erase voltage corresponding to the bit line and the source line is applied to the bit line and the source line connected to a memory cell to be programmed or erased in the memory array via the voltage switch circuit, the pulse voltage applying circuit applies a voltage pulse for programming or erasing to the word line connected to the gate electrode of the selection transistor connected to the memory cell.
Owner:SAMSUNG ELECTRONICS CO LTD

Substrate plasma processing apparatus and plasma processing method

A substrate plasma processing apparatus includes a substrate holding electrode and a counter electrode which are arranged in a chamber, a high frequency generating device which applies a high frequency of 50 MHZ or higher to the substrate holding electrode, a DC negative pulse generating device which applies a DC negative pulse voltage in a manner of superimposing on the high frequency, and a controller controlling to cause intermittent application of the high frequency and cause intermittent application of the DC negative pulse voltage according to the timing of on or off of the high frequency.
Owner:TOKYO ELECTRON LTD +1

Electrical machine and method of controlling the same

An electrical machine having a stator and a rotor. The stator includes a core and a plurality of windings disposed on the core in a multiple-phase arrangement. The rotor is disposed adjacent to the stator to interact with the stator. A method of operating the motor includes applying a pulsed voltage differential to first and second terminals of the windings resulting in movement of the rotor; monitoring the back electromotive force (BEMF) of the windings to sense rotor movement; after the applying and monitoring steps, monitoring the BEMF of the windings to determine whether the rotor is rotating in a desired direction, and electrically commutating the motor when the rotor is rotating in the desired direction and zero or more other conditions exist.
Owner:REGAL BELOIT AMERICA

Full-bridge DC-to-DC converter having an unipolar gate drive

A full-bridge DC-to-DC converter having an unipolar gate drive is disclosed. The full-bridge DC-to-DC converter includes a primary-to-secondary transformer, multiple gate drive circuits, and multiple gate drive transformers. The primary-to-secondary transformer converts a first DC voltage to a second DC voltage under the control of the gate drive circuits. Each of the gate drive circuits includes a first transistor and a second transistor. The gate of the first transistor is connected to a pulse voltage source via a diode. The drain of the second transistor is connected to the source of the first transistor, and the source of the second transistor is connected to the gate of the first transistor via a resistor, for discharging a gate-to-source voltage of the first transistor during the time when a voltage of the pulse voltage source is below a gate-to-source threshold voltage of the first transistor. Coupled to at least two of the gate drive circuits, each of the gate drive transformers controls at least two gate drive circuits.
Owner:IBM CORP

Switchable resistive perovskite microelectronic device with multi-layer thin film structure

A switchable resistive device has a multi-layer thin film structure interposed between an upper conductive electrode and a lower conductive electrode. The multi-layer thin film structure comprises a perovskite layer with one buffer layer on one side of the perovskite layer, or a perovskite layer with buffer layers on both sides of the perovskite layer. Reversible resistance changes are induced in the device under applied electrical pulses. The resistance changes of the device are retained after applied electric pulses. The functions of the buffer layer(s) added to the device include magnification of the resistance switching region, reduction of the pulse voltage needed to switch the device, protection of the device from being damaged by a large pulse shock, improvement of the temperature and radiation properties, and increased stability of the device allowing for multivalued memory applications.
Owner:UNIV HOUSTON SYST

Apparatus and method for velocity estimation in synthetic aperture imaging

The invention relates to an apparatus for flow estimation using synthetic aperture imaging. The method uses a Synthetic Transmit Aperture, but unlike previous approaches a new frame is created after every pulse emission. In receive mode parallel beam forming is implemented. The beam formed RF data is added to the previously created RF lines obtained by the same transmit sequence. The apparatus comprises a pulser (1) to generate a pulsed voltage signal, that is fed to the emit beam former (2). The emit beam former (2) is connected to the emitting transducer array (3). The ultrasound is reflected by the object (4) and received by the elements of the transducer array (5). All of these signals are then combined in the beam processor (6) to focus all of the beams in the image in both transmit and receive mode and the simultaneously focused signals are used for updating the image in the processor (7). The estimation processor (8) to correlate the individual measurements to obtain the displacement between high-resolution images and thereby determine the velocity.
Owner:B K MEDICAL

Voltage source converter (VSC) with neutral-point-clamped (NPC) topology and method for operating such voltage source converter

A Voltage Source Converter (VSC) (10) with Neutral-Point-Clamped (NPC) topology with one or more phases, comprises an intermediate DC circuit having at least a first and a second capacitance connected in series between a positive terminal and a negative terminal, providing a central tap terminal between both capacitances, and at least one sub-circuit for generating one phase of an alternating voltage, each sub-circuit comprising an AC terminal for supplying a pulsed voltage; a circuit arrangement of the form of a conventional NPC converter, with a first series connection of at least two switches between said AC terminal and said positive terminal, a second series connection of at least two switches between said AC terminal said negative terminal, and switchable connections from said central tap terminal to the centers of both two-switch series connections; and additional first and second auxiliary switches assigned to said two-switch series connections.
Owner:GENERAL ELECTRIC TECH GMBH

Charging of batteries

A method and apparatus for fast charging of batteries such as lead acid batteries is provided. A repeatedly pulsed current is applied to the battery to enable a determined resistance free maximum pulsed voltage to be reached where the determined resistance free maximum pulsed voltage is below that at which unacceptable gassing will occur. The determined resistance free maximum pulsed voltage is above that of a known average resistance free pulsed voltage for the battery type. When the determined maximum pulsed voltage is reached the pulsed current is continued to be applied to maintain the resistance free maximum pulsed voltage at approximately the determined resistance free maximum pulsed voltage by at least one of: (I) reducing the amplitude of the pulsed charging current, (II) increasing the OFF-time of pulses of the pulsed charging current, (III) decreasing the ON-time of pulses of the pulsed charging current, (IV) a combination of any two or more of (I), (II) or (III). In addition, the present invention may employ a combination of stages to charge the battery. Alternatively or in combination, the system may use a repeatedly pulsed charging current or a repeatedly pulsed charge voltage to control and adjust the charging of the battery.
Owner:COMMONWEALTH SCI & IND RES ORG

Apparatus for partial discharge detection of turn to turn insulation in motor

The apparatus for partial discharge detection of turn-to-turn insulation in motor has a surge generator for generating a surge voltage to the windings of the motor by applying a pulse voltage, and a partial discharge current detector for detecting partial discharge currents between the winding turns of the motor. The surge generator generates in and between the windings of the motor the surge voltage that has the rise time and fall time corresponding to the rise time of the surge voltage observed at the motor terminal when the motor is driven by an inverter, and that is repeated at a frequency of 50 Hz to 20 kHz.
Owner:HITACHI IND EQUIP SYST CO LTD

Touch panel

A capacitive touch panel has a plurality of first transparent electrodes and a plurality of second transparent electrodes on a transparent substrate. At crossing portions between the first and second electrodes, adjacent electrodes of the second electrodes have no interruption, and adjacent electrodes of the first electrodes are interrupted. An interlayer insulating film is disposed as an upper layer on the second electrodes, and a bridge electrode is disposed as an upper layer on the interlayer insulating film to connect interrupted portions of the first electrodes at the crossing portions. The material constituting the bridge electrode contains an element that is more susceptible to oxidation than elements contained in a material constituting the second electrodes. Constant voltage is applied to the first electrodes, and a pulse voltage having a low potential equal to or higher than the potential of the first electrodes is applied to the second electrodes.
Owner:OPTREX CORP

Memory device, memory circuit and semiconductor integrated circuit having variable resistance

ActiveUS20070159867A1High write powerLong write timeSolid-state devicesRead-only memoriesMemory circuitsPulse voltage
A first variable resistor (5) is connected between a first terminal (7) and a third terminal (9) and increases / reduces its resistance value in accordance with the polarity of a pulse voltage applied between the first terminal (7) and the third terminal (9). A second variable resistor (6) is connected between the third terminal (9) and a second terminal (8) and increases / reduces its resistance value in accordance with the polarity of a pulse voltage applied between the third terminal (9) and the second terminal (8). Given pulse voltages are applied between the first terminal (7) and the third terminal (9) and between the third terminal (9) and the second terminal (8) to reversibly change the resistance values of the first and second variable resistors (5, 6), thereby recording one bit or multiple bits of information.
Owner:PANASONIC CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products