Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2979results about "Blood flow measurement devices" patented technology

Personal computer card for collection of real-time biological data

A real-time biological data processing PC card is lightweight, cost effective, and portable. The real-time biological data processing PC card is capable of converting a host personal computer system into a powerful diagnostic instrument. Each real-time biological data processing PC card is adapted to input and process biological data from one or more biological data sensors, and is interchangeable with other real-time biological data processing PC cards. A practitioner having three different real-time biological data processing PC cards, for example, each one corresponding to a different biological data collection device, effectively carries three full-sized, powerful diagnostic instruments. The full resources of a host personal computer can be utilized and converted into a powerful diagnostic instrument, for each biological data collection device, by the insertion of one of the real-time biological data processing PC cards.
Owner:VECTRACOR

Robotically assisted medical ultrasound

A system for medical ultrasound in which the ultrasound probe is positioned by a robot arm under the shared control of the ultrasound operator and the computer is proposed. The system comprises a robot arm design suitable for diagnostic ultrasound, a passive or active hand-controller, and a computer system to co-ordinate the motion and forces of the robot and hand-controller as a function of operator input, sensed parameters and ultrasound images.
Owner:THE UNIV OF BRITISH COLUMBIA

Method and system for patient-specific modeling of blood flow

Embodiments include a system for determining cardiovascular information for a patient. The system may include at least one computer system configured to receive patient-specific data regarding a geometry of the patient's heart, and create a three-dimensional model representing at least a portion of the patient's heart based on the patient-specific data. The at least one computer system may be further configured to create a physics-based model relating to a blood flow characteristic of the patient's heart and determine a fractional flow reserve within the patient's heart based on the three-dimensional model and the physics-based model.
Owner:HEARTFLOW

Systems and methods for non-invasive detection and monitoring of cardiac and blood parameters

Methods and systems for long term monitoring of one or more physiological parameters such as respiration, heart rate, body temperature, electrical heart activity, blood oxygenation, blood flow velocity, blood pressure, intracranial pressure, the presence of emboli in the blood stream and electrical brain activity are provided. Data is acquired non-invasively using ambulatory data acquisition techniques.
Owner:UNIV OF WASHINGTON +1

System and method for three-dimensional reconstruction of an artery

A method and system for imaging an artery contained in an arterial tree. A microprocessor generates a three-dimensional reconstruction of the arterial tree from two or more angiographic images obtained from different perspectives. The orientation of the axis of the artery in the arterial tree is then determined, and a perspective of the artery perpendicular to the axis of the artery is determined. A three dimensional reconstruction of the artery from angiographic images obtained from the determined perspective is then generated.
Owner:PAIEON INC

User interface for handheld imaging devices

A Graphical User Interface (GUI) for an ultrasound system. The ultrasound system has operational modes and the GUI has corresponding icons, tabs, and menu items image and information fields. The User Interface (UI) provides several types of graphical elements with intelligent behavior, such as being context sensitive and adaptive, called active objects, for example, tabs, menus, icons, windows of user interaction and data display and an alphanumeric keyboard. In addition the UI may also be voice activated. The UI further provides for a touchscreen for direct selection of displayed active objects. In an embodiment, the UI is for a medical ultrasound handheld imaging instrument. The UI provides a limited set of hard and soft keys with adaptive functionality that can be used with only one hand and potentially with only one thumb.
Owner:SHENZHEN MINDRAY BIO MEDICAL ELECTRONICS CO LTD

Focused ultrasound system with adaptive anatomical aperture shaping

ActiveUS20060058671A1Reducing ultrasound energyUltrasound therapyBlood flow measurement devicesSonificationTransducer
A method of treating tissue within a body includes directing an ultrasound transducer having a plurality of transducer elements towards target body tissue, and delivering ultrasound energy towards the target tissue from the transducer elements such that an energy intensity at the target tissue is at or above a prescribed treatment level, while an energy intensity at tissue to be protected in the ultrasound energy path of the transducer elements is at or below a prescribed safety level.
Owner:INSIGHTEC

Ultrasound guided high intensity focused ultrasound treatment of nerves

A method for using high intensity focused ultrasound (HIFU) to treat neurological structures to achieve a desired therapeutic affect. Depending on the dosage of HIFU applied, it can have a reversible or irreversible effect on neural structures. For example, a relatively high dose of HIFU can be used to permanently block nerve function, to provide a non-invasive alternative to severing a nerve to treat severe spasticity. Relatively lower doses of HIFU can be used to reversible a block nerve function, to alleviate pain, to achieve an anesthetic effect, or to achieve a cosmetic effect. Where sensory nerves are not necessary for voluntary function, but are involved in pain associated with tumors or bone cancer, HIFU can be used to non-invasively destroy such sensory nerves to alleviate pain without drugs. Preferably, ultrasound imaging synchronized to the HIFU therapy is used to provide real-time ultrasound image guided HIFU therapy of neural structures.
Owner:UNIV OF WASHINGTON

Use of contrast agents to increase the effectiveness of high intensity focused ultrasound therapy

Ultrasound contrast agents are used to enhance imaging and facilitate HIFU therapy in four different ways. A contrast agent is used: (1) before therapy to locate specific vascular structures for treatment; (2) to determine the focal point of a HIFU therapy transducer while the HIFU therapy transducer is operated at a relatively low power level, so that non-target tissue is not damaged as the HIFU is transducer is properly focused at the target location; (3) to provide a positive feedback mechanism by causing cavitation that generates heat, reducing the level of HIFU energy administered for therapy compared to that required when a contrast agent is not used; and, (4) to shield non-target tissue from damage, by blocking the HIFU energy. Various combinations of these techniques can also be employed in a single therapeutic implementation.
Owner:UNIV OF WASHINGTON

Ultrasound methods of positioning guided vascular access devices in the venous system

The invention relates to the guidance, positioning and placement confirmation of intravascular devices, such as catheters, stylets, guidewires and other flexible elongate bodies that are typically inserted percutaneously into the venous or arterial vasculature. Currently these goals are achieved using x-ray imaging and in some cases ultrasound imaging. This invention provides a method to substantially reduce the need for imaging related to placing an intravascular catheter or other device. Reduced imaging needs also reduce the amount of radiation that patients are subjected to, reduce the time required for the procedure, and decrease the cost of the procedure by reducing the time needed in the radiology department. An aspect of the invention includes, for example, an endovenous access and guidance system. The system comprises: an elongate flexible member adapted and configured to access the venous vasculature of a patient; a sensor disposed at a distal end of the elongate flexible member and configured to provide in vivo non-image based ultrasound information of the venous vasculature of the patient; a processor configured to receive and process in vivo non-image based ultrasound information of the venous vasculature of the patient provided by the sensor and to provide position information regarding the position of the distal end of the elongate flexible member within the venous vasculature of the patient; and an output device adapted to output the position information from the processor.
Owner:TELEFLEX LIFE SCI LTD

Modulation and analysis of cerebral perfusion in epilepsy and other neurological disorders

A system including an implantable neurostimulator device capable of modulating cerebral blood flow to treat epilepsy and other neurological disorders. In one embodiment, the system is capable of modulating cerebral blood flow (also referred to as cerebral perfusion) in response to measurements and other observed conditions. Perfusion may be increased or decreased by systems and methods according to the invention as clinically required.
Owner:NEUROPACE

Method and System for Machine Learning Based Assessment of Fractional Flow Reserve

A method and system for determining fractional flow reserve (FFR) for a coronary artery stenosis of a patient is disclosed. In one embodiment, medical image data of the patient including the stenosis is received, a set of features for the stenosis is extracted from the medical image data of the patient, and an FFR value for the stenosis is determined based on the extracted set of features using a trained machine-learning based mapping. In another embodiment, a medical image of the patient including the stenosis of interest is received, image patches corresponding to the stenosis of interest and a coronary tree of the patient are detected, an FFR value for the stenosis of interest is determined using a trained deep neural network regressor applied directly to the detected image patches.
Owner:SIEMENS HEALTHCARE GMBH

Devices and methods for maintaining collateral channels in tissue

The devices and methods of placement of such devices disclosed herein are directed to altering gaseous flow within a lung to improve the expiration cycle of, for instance, an individual having Chronic Obstructive Pulmonary Disease. More particularly, these devices produce and maintain collateral openings or channels through the airway wall so that oxygen depleted / carbon dioxide rich air is able to pass directly out of the lung tissue to facilitate both the exchange of oxygen ultimately into the blood and / or to decompress hyper-inflated lungs. The medical kits disclosed herein are also directed to produce and maintain collateral openings through airway walls.
Owner:BRONCUS MEDICAL

Method and apparatus for time gating of medical images

A medical imaging system is provided which includes a signal generator configured to obtain a trigger signal corresponding to a timing of interest, imaging equipment configured to obtain a plurality of images of a feature of interest, and a processor programmed to correlate the plurality of images with the trigger signal. Also provided is a method of correlating a plurality of medical images by obtaining a trigger signal of a timing of interest, obtaining a plurality of images of a feature of interest, and correlating the plurality of images with the trigger signal.
Owner:ST JUDE MEDICAL ATRIAL FIBRILLATION DIV

User interface for handheld imaging devices

A Graphical User Interface (GUI) for an ultrasound system. The ultrasound system has operational modes and the GUI has corresponding icons, tabs, and menu items image and information fields. The User Interface (UI) provides several types of graphical elements with intelligent behavior, such as being context sensitive and adaptive, called active objects, for example, tabs, menus, icons, windows of user interaction and data display and an alphanumeric keyboard. In addition the UI may also be voice activated. The UI further provides for a touchscreen for direct selection of displayed active objects. In an embodiment, the UI is for a medical ultrasound handheld imaging instrument. The UI provides a limited set of hard and soft keys with adaptive functionality that can be used with only one hand and potentially with only one thumb.
Owner:ZONARE MEDICAL SYST

Systems and methods for determining intracranial pressure non-invasively and acoustic transducer assemblies for use in such systems

Systems and methods for determining ICP based on parameters that can be measured using non-invasive or minimally invasive techniques are provided, wherein a non-linear relationship is used to determine ICP based on one or more variable inputs. The first variable input relates to one or more properties of a cranial blood vessel and / or blood flow, such as acoustic backscatter from an acoustic transducer having a focus trained on a cranial blood vessel, flow velocity in a cranial blood vessel, and the like. Additional variables, such as arterial blood pressure (ABP), may be used in combination with a first variable input relating to one or more properties of a cranial blood vessel, such as flow velocity of the middle cerebral artery (MCA) to derive ICP using a non-linear relationship. Methods and systems for locating target areas based on their acoustic properties and for acoustic scanning of an area, identification of a target area of interest based on acoustic properties, and automated focusing of an acoustic source and / or detector on a desired target area are also provided. Acoustic transducer assemblies are described.
Owner:PHYSIOSONICS +1

Methods and devices for providing acoustic hemostasis

Methods and apparatus for the remote coagulation of blood using high-intensity focused ultrasound (HIFU) are provided. A remote hemostasis method comprises identifying a site of internal bleeding and focusing therapeutic ultrasound energy on the site, the energy being focused through an intervening tissue. An apparatus for producing remote hemostasis comprises a focused therapeutic ultrasound radiating surface and a sensor for identifying a site of internal bleeding, with a registration means coupled to the radiating surface and the sensor to bring a focal target and the bleeding site into alignment. The sensor generally comprises a Doppler imaging display. Hemostasis enhancing agents may be introduced to the site for actuation by the ultrasound energy.
Owner:THS INT

Apparatus and Method for Endovascular Device Guiding and Positioning Using Physiological Parameters

An endovascular access and guidance system has an elongate body with a proximal end and a distal end; a non-imaging ultrasound transducer on the elongate body configured to provide in vivo non-image based ultrasound information of the vasculature of the patient; an endovascular electrogram lead on the elongate body in a position that, when the elongate body is in the vasculature, the endovascular electrogram lead electrical sensing segment provides an in vivo electrogram signal of the patient; a processor configured to receive and process a signal from the non-imaging ultrasound transducer and a signal from the endovascular electrogram lead; and an output device configured to display a result of information processed by the processor. An endovascular device has an elongate body with a proximal end and a distal end; a non-imaging ultrasound transducer on the elongate body; and an endovascular electrogram lead on the elongate body in a position that, when the endovascular device is in the vasculature, the endovascular electrogram lead is in contact with blood. The method of positioning an endovascular device in the vasculature of a body is performed by advancing the endovascular device into the vasculature; transmitting a non-imaging ultrasound signal into the vasculature using a non-imaging ultrasound transducer on the endovascular device; receiving a reflected ultrasound signal with the non-imaging ultrasound transducer; detecting an endovascular electrogram signal with a sensor on the endovascular device; processing the reflected ultrasound signal received by the non-imaging ultrasound transducer and the endovascular electrogram signal detected by the sensor; and positioning the endovascular device based on the processing step.
Owner:TELEFLEX LIFE SCI LTD

Endovenous access and guidance system utilizing non-image based ultrasound

The invention relates to the guidance, positioning and placement confirmation of intravascular devices, such as catheters, stylets, guidewires and other flexible elongate bodies that are typically inserted percutaneously into the venous or arterial vasculature. Currently these goals are achieved using x-ray imaging and in some cases ultrasound imaging. This invention provides a method to substantially reduce the need for imaging related to placing an intravascular catheter or other device. Reduced imaging needs also reduce the amount of radiation that patients are subjected to, reduce the time required for the procedure, and decrease the cost of the procedure by reducing the time needed in the radiology department. An aspect of the invention includes, for example, an endovenous access and guidance system. The system comprises: an elongate flexible member adapted and configured to access the venous vasculature of a patient; a sensor disposed at a distal end of the elongate flexible member and configured to provide in vivo non-image based ultrasound information of the venous vasculature of the patient; a processor configured to receive and process in vivo non-image based ultrasound information of the venous vasculature of the patient provided by the sensor and to provide position information regarding the position of the distal end of the elongate flexible member within the venous vasculature of the patient; and an output device adapted to output the position information from the processor.
Owner:TELEFLEX LIFE SCI LTD

Method and apparatus for ultrasound guided intravenous cannulation

A dual mode handheld ultrasonic device is provided for guiding a venous access catheter into a patient's peripheral vein. It provides B-mode imaging with a predetermined aperture and operating frequency which locates and displays a gray scale cross-sectional image of the target blood vessel. A single doppler beam in a separate mode detects the same blood vessel and creates a single scanline image superimposed to such B-mode cross-sectional image. Simultaneously, the intensity of the positive doppler shift detected by the single doppler beam as it hits the target blood vessel activates a plurality of light emitting diode (LED) indicator lights with varying voltage requirements mounted in the scanhead. Activated LED indicator lights forms an arrow pointing inferiorly perpendicular to the target vessel which guides a physician or a paramedical professional to the precise catheter insertion spot on a patient's extremity while simultaneously viewing the target blood vessel's cross-section on the display screen.
Owner:PATACSIL ESTELITO G +1

Apparatus and methods for reducing embolization during treatment of carotid artery disease

Methods and apparatus are provided for removing emboli during an angioplasty, stenting or surgical procedure comprising a catheter having an occlusion element, an aspiration lumen, and a blood outlet port in communication with the lumen, a guide wire having a balloon, a venous return catheter with a blood inlet port, and tubing that couples the blood outlet port to the blood inlet port. Apparatus is also provided for occluding the external carotid artery to prevent reversal of flow into the internal carotid artery. The pressure differential between the artery and the vein provides reverse flow through the artery, thereby flushing emboli. A blood filter may optionally be included in-line with the tubing to filter emboli from blood reperfused into the patient.
Owner:WL GORE & ASSOC INC

Noninvasive measurement of chemical substances

Utilization of a contact device placed on the eye in order to detect physical and chemical parameters of the body as well as the non-invasive delivery of compounds according to these physical and chemical parameters, with signals being transmitted continuously as electromagnetic waves, radio waves, infrared and the like. One of the parameters to be detected includes non-invasive blood analysis utilizing chemical changes and chemical products that are found in the conjunctiva and in the tear film. A transensor mounted in the contact device laying on the cornea or the surface of the eye is capable of evaluating and measuring physical and chemical parameters in the eye including non-invasive blood analysis. The system utilizes eye lid motion and / or closure of the eye lid to activate a microminiature radio frequency sensitive transensor mounted in the contact device. The signal can be communicated by wires or radio telemetered to an externally placed receiver. The signal can then be processed, analyzed and stored. Several parameters can be detected including a complete non-invasive analysis of blood components, measurement of systemic and ocular blood flow, measurement of heart rate and respiratory rate, tracking operations, detection of ovulation, detection of radiation and drug effects, diagnosis of ocular and systemic disorders and the like.
Owner:GEELUX HLDG LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products