Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

19713results about How to "Improve image quality" patented technology

Device for expanding an exit pupil in two dimensions

A diffractive beam expander (50) comprises an input grating (10), a crossed grating (20), and an output grating (30) implemented on a planar transparent substrate (7). The crossed grating (20) comprises a plurality of diffractive features (23) arranged along the lines of a first set of parallel lines (25) and along the lines of a second set of parallel lines (26) such that the lines (25) of the first set are parallel to the lines (26) of the second set. The lines of the first set have a first grating period and the lines of the second set have a second grating period. A light beam (B1) coupled into the substrate (7) by the input grating (10) impinges on the crossed grating (20) at a first location (EC1) and further locations (EC2). Interaction at the first location (EC1) provides several sub-beams (S00, S01, S10) which propagate in different directions. Further interactions at second locations (EC2) provide further sub-beams (V01, U10) which propagate in the same direction as the original in-coupled light (B1). Light is subsequently coupled out of the substrate (7) by the output grating (30) to provide a light beam (B2) which is expanded in two directions (SX, SZ) with respect to the beam (B0) impinging on the input grating. A virtual display device (200) may comprise said diffractive beam expander (50).
Owner:MAGIC LEAP

Device for expanding an exit pupil in two dimensions

A diffractive beam expander (50) comprises an input grating (10), a crossed grating (20), and an output grating (30) implemented on a planar transparent substrate (7). The crossed grating (20) comprises a plurality of diffractive features (23) arranged along the lines of a first set of parallel lines (25) and along the lines of a second set of parallel lines (26) such that the lines (25) of the first set are parallel to the lines (26) of the second set. The lines of the first set have a first grating period and the lines of the second set have a second grating period. A light beam (B1) coupled into the substrate (7) by the input grating (10) impinges on the crossed grating (20) at a first location (EC1) and further locations (EC2). Interaction at the first location (EC1) provides several sub-beams (S00, S01, S10) which propagate in different directions. Further interactions at second locations (EC2) provide further sub-beams (V01, U10) which propagate in the same direction as the original in-coupled light (B1). Light is subsequently coupled out of the substrate (7) by the output grating (30) to provide a light beam (B2) which is expanded in two directions (SX, SZ) with respect to the beam (B0) impinging on the input grating. A virtual display device (200) may comprise said diffractive beam expander (50).
Owner:MAGIC LEAP INC

Image capturing optical lens assembly

An image capturing optical lens assembly includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The first lens element has positive refractive power. The second lens element has positive refractive power. The third lens element has negative refractive power. The fourth lens element has positive refractive power. The fifth lens element with negative refractive power is made of plastic material, and has an image-side surface being concave at a paraxial region and being convex at a peripheral region, wherein at least one of an object-side surface and the image-side surface of the fifth lens element is aspheric.
Owner:LARGAN PRECISION

Imaging lens system

This invention provides an imaging lens system including, in order from an object side to an image side: a first lens with positive refractive power having a convex object-side surface; a second lens with negative refractive power; a third lens having a concave image-side surface; a fourth lens with positive refractive power; a fifth lens with negative refractive power having a concave image-side surface, at least one surface thereof having at least one inflection point; and an aperture stop disposed between an imaged object and the third lens. The on-axis spacing between the first lens and second lens is T12, the focal length of the imaging lens system is f, and they satisfy the relation: 0.5<(T12 / f)×100<15.
Owner:LARGAN PRECISION

Optical image capturing lens assembly

An optical image capturing lens assembly includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, and a sixth lens element. The first lens element with positive refractive power has a convex object-side surface. The object-side surface and the image-side surface of the fifth lens element are aspheric and at least one of the object-side surface and the image-side surface has at least one inflection point formed thereon. The sixth lens element with negative refractive power has a concave object-side surface and a convex image-side surface, wherein the object-side surface and the image-side surface of the sixth lens element are aspheric.
Owner:LARGAN PRECISION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products