Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

14410 results about "Focal length" patented technology

The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power. A positive focal length indicates that a system converges light, while a negative focal length indicates that the system diverges light. A system with a shorter focal length bends the rays more sharply, bringing them to a focus in a shorter distance or diverging them more quickly. For the special case of a thin lens in air, a positive focal length is the distance over which initially collimated (parallel) rays are brought to a focus, or alternatively a negative focal length indicates how far in front of the lens a point source must be located to form a collimated beam. For more general optical systems, the focal length has no intuitive meaning; it is simply the inverse of the system's optical power.

System and methods for querying digital image archives using recorded parameters

System and methods for querying digital image archives containing digital photographs and / or videos (collectively, "digital images"). The digital images are indexed in accordance with a plurality of recorded parameters including time, date and geographic location data (altitude and longitude), as well as image data such as lens focal length, auto focus distance, shutter speed, exposure duration, aperture setting, frame number, image quality, flash status and light meter readings, which are used for searching a database consisting of the digital images. These images are preferably generated by an image capturing system which is capable of measuring and recording a plurality of parameters with each captured digital image. The image retrieval system allows a querying user to search the image archive by formulating one or more of a plurality of query types which are based on the recorded parameters, and then retrieve and display those images having the specified parameters.
Owner:IBM CORP

Force sensing touch screen

A computing device includes a touch screen display with a plurality of force sensors, each of which provides a signal in response to contact with the touch screen display. Using force signals from the plurality of force sensors, a characteristic of the contact is determined, such as the magnitude of the force, the centroid of force and the shear force. The characteristic of the contact is used to select a command which is processed to control the computing device. For example, the command may be related to manipulating data displayed on the touch screen display, e.g., by adjusting the scroll speed or the quantity of data selected in response to the magnitude of force, or related to an operation of an application on the computing device, such as selecting different focal ranges, producing an alarm, or adjusting the volume of a speaker in response to the magnitude of force.
Owner:QUALCOMM INC

Camera using multiple lenses and image sensors to provide improved focusing capability

An electronic camera for producing an output image of a scene from a captured image signal includes: (a) a first imaging stage comprising a first image sensor for generating a first sensor output; a first lens for forming a first image of the scene on the first image sensor; and a first lens focus adjuster for adjusting focus of the first lens responsive to a first focus detection signal; and (b) a second imaging stage comprising a second image sensor for generating a second sensor output; a second lens for forming a second image of the scene on the second image sensor; and a second lens focus adjuster for adjusting focus of the second lens responsive to a second focus detection signal. A processing stage either (a) selects the sensor output from the first imaging stage as the captured image signal and uses the sensor output from the second imaging stage to generate the first focus detection signal for the selected imaging stage, or (b) selects the sensor output from the second imaging stage as the captured image signal and uses the sensor output from the first imaging stage to generate the second focus detection signal for the selected imaging stage.
Owner:INTELLECTUAL VENTURES FUND 83 LLC

Intraocular lens

An intraocular lens of novel structure exhibiting an excellent focus adjusting power. A hollow capsule structure is filled with a transparent liquid-like or gel-like filler (32). A front wall of the capsule structure is composed of a flexible lens front film (16), and a rear wall of the capsule structure is composed of an optical lens (18) having a diameter larger than that of the flexible lens front film (16). Under a state inserted into and attached to a capsula lentis, pressure variation of a corpus vitreum acts on the optical lens (18) to enable focal refraction power to be adjusted by utilizing swelling deformation of the lens front film (16).
Owner:KOWA CO LTD

Four-piece lens assembly

ActiveUS7365920B2Strong negative refractive powerSuppression lengthLensRefractive indexImage plane
A four-piece lens assembly, from the object side, comprises: an aperture, a first lens, a second lens, a third lens, a fourth lens, a flat parallel glass and an image plane. The first lens is a double convex positive lens. The second lens is a double concave negative lens or a plano-concave lens whose object side surface contacts the image side surface of the first lens. The first and second lenses contact each other in such a manner that the concave surface of the connecting surface faces the object side, and the concave surface (or plano surface) of the second lens faces the image plane. The first and second lenses are made of high refractive index material. The lens assembly not only can ensure a necessary back focus but also can suppress the total length of a portable image taking device.
Owner:LARGAN PRECISION

Camera using multiple lenses and image sensors in a rangefinder configuration to provide a range map

An electronic camera for producing an output image of a scene from a captured image signal includes a first imaging stage comprising a first image sensor for generating a first sensor output and a first lens for forming a first image of the scene on the first image sensor, and a second imaging stage comprising a second image sensor for generating a second sensor output and a second lens for forming a second image of the scene on the second image sensor, where the lenses have different focal lengths. A processing stage uses the sensor output from one of the imaging stages as the captured image signal and uses the images from both imaging stages to generate a range map identifying distances to the different portions of the scene.
Owner:MONUMENT PEAK VENTURES LLC

Focused plenoptic camera employing microlenses with different focal lengths

Methods and apparatus for capturing and rendering images with focused plenoptic cameras employing microlenses with different focal lengths. A focused plenoptic camera that includes an array of microlenses with at least two different focal lengths may be used to simultaneously capture microimages from at least two different planes at different distances from the microlens array. Image operations such as refocusing and focus bracketing may be performed on flats captured with the camera. Images may be constructed from subsets of the microimages captured using each type of microlens, thus creating multiple images each focused at a different depth. An array of stacked microlenses including stacks that provide different focal lengths may be used. The lens stacks may be provided by stacking two microlenses arrays on top of each other in the camera.
Owner:ADOBE INC

Multi-lens camera

A camera with multiple lenses and multiple sensors wherein each lens / sensor pair generates a sub-image of a final photograph or video. Different embodiments include: manufacturing all lenses as a single component; manufacturing all sensors as one piece of silicon; different lenses incorporate filters for different wavelengths, including IR and UV; non-circular lenses; different lenses are different focal lengths; different lenses focus at different distances; selection of sharpest sub-image; blurring of selected sub-images; different lens / sensor pairs have different exposures; selection of optimum exposure sub-images; identification of distinct objects based on distance; stereo imaging in more than one axis; and dynamic optical center-line calibration.
Owner:ZETTA RES & DEV - FORC SERIES

Digital camera with built-in lens calibration table

A digital camera that automatically corrects dust artifact regions within acquired images by compiling a dust map includes an optical system for acquiring an image with a corresponding dust calibration table for such optical system, including a lens assembly and an aperture stop, in which the corresponding dust calibration map can reside. A transformation between the dust map and the specific lens calibration table, enables the use for a single dust map in multiple instances of lenses and focal length, without the need to recalibrate the digital camera for each instance.
Owner:FOTONATION LTD

Image capturing system and method for automatically watermarking recorded parameters for providing digital image verification

An image capturing system and method for automatically watermarking a plurality of recorded camera and image parameters such as the location (latitude, longitude and altitude), orientation of the principal axis of the camera, whether the camera is in landscape mode or portrait mode, camera velocity, photographer information, time and date, zoom factor, shutter speed, flash on / off, autofocus distance, lightmeter reading, focal length and aperture into every captured image. This watermarked data can be subsequently extracted and compared with the originally recorded data so as to verify the authenticity of a corresponding image. Since the critical data is invisibly watermarked into the image, it is difficult to modify the image without affecting the watermarked data.
Owner:IBM CORP

Metamaterial scanning lens antenna systems and methods

The present invention is directed to systems and methods for radiating radar signals, communication signals, or other similar signals. In one embodiment, a system includes a controller that generates a control signal and an antenna coupled to the controller. The antenna includes a first component that generates at least one wave based on the generated control signal and a metamaterial lens positioned at some predefined focal length from the first component. The metamaterial lens directs the generated at least one wave.
Owner:THE BOEING CO

Optical lens system for taking image

An optical lens system for taking image has, in order from the object side to the image side: a positive first lens element with a convex object-side surface; a negative plastic second lens element with a concave object-side surface; a negative plastic third lens element with a concave object-side surface; a positive fourth lens element with a concave image-side surface; and an aperture stop located between an object to be photographed and the second lens element. The second lens element is provided with at least one aspheric surface, the third lens element is provided with at least one aspheric surface, and the fourth lens element is formed with inflection points. An on-axis distance between the first and second lens elements is T12, a focal length of the optical lens system for taking image is f, they satisfy the relation: (T12 / f)*100>0.7.
Owner:LARGAN PRECISION

Digital camera using multiple fixed focal length lenses and multiple image sensors to provide an extended zoom range

An electronic camera includes a plurality of three or more image sensors for generating three or more sensor outputs; a plurality of three or more fixed focal length lenses for forming a corresponding three or more images of the scene on the corresponding three or more image sensors, each of the lenses providing a different field of view of the scene; a control element for selecting one of the sensor outputs from one of the image sensors; and a processing section for producing the output image from the selected sensor output.
Owner:EASTMAN KODAK CO

Compound-eye imaging device

A compound-eye imaging device comprises an imaging device body having 9 optical lenses and a solid-state imaging element for imaging unit images formed by the optical lenses. Assuming that the combination of each of the optical lenses with a corresponding divided area of the solid-state imaging element to image each of the corresponding unit images is an imaging unit, thereby forming multiple imaging units, the respective imaging units have randomly different optical imaging conditions. For example, the focal lengths of the 9 optical lenses are set to have random values in which the optical lenses are arranged to have random distances between adjacent ones thereof in a direction parallel to the major surface of the solid-state imaging element. This compound-eye imaging device substantially prevents unit images formed by respective imaging units from being the same, making it possible to easily increase the definition of a reconstructed image.
Owner:FUNAI ELECTRIC CO LTD

Digital camera using multiple image sensors to provide improved temporal sampling

A method and apparatus for capturing image data from multiple image sensors and generating an output image sequence are disclosed. The multiple image sensors capture data with one or more different characteristics, such as: staggered exposure periods, different length exposure periods, different frame rates, different spatial resolution, different lens systems, and different focal lengths. The data from multiple image sensors is processed and interleaved to generate an improved output motion sequence relative to an output motion sequence generated from an a single equivalent image sensor.
Owner:MONUMENT PEAK VENTURES LLC

Use of a lenslet array with a vertically stacked pixel array

An improved optical imaging system includes a vertically stacked pixel array and a lenslet array for capturing images while minimizing the focal length. The vertically stacked pixel array is configured to operate as an image sensor. The lenslet array is configure to focus the image on the image sensor. Each lens of the lenslet array focuses an image on a sub-array of the image sensor. Each sub-array is shifted from one another so that additional data obtained for each equivalent pixel in each sub-array. An image is obtained by combining the data of each sub-array.
Owner:FOVEON

Focal length estimation method and apparatus for construction of panoramic mosaic images

The focal length estimation method and apparatus claimed in this application aligns plural overlapping images with one another for constructing an image mosaic. This is accomplished by computing a planar perspective transformation between each overlapping pair of the images, computing from the planar perspective transformation a focal length of each image of the pair, computing from the focal length of each image a focal length transformation, computing a rotational transformation for each of the pair of images whereby a combination of the rotational transformation and the focal length transformation relates the respective image to a three-dimensional coordinate system. Registration errors between the pair of images are reduced by incrementally deforming the rotational transformation of one of the pair of images. The planar perspective transform is a matrix of warp elements, and the focal length is computed as a function of the warp elements, the function being derivable by constraining a first two rows or the first two columns of the matrix to have the same norm and to be orthogonal. The focal length of one image of a pair of images is found by applying the constraint on the matrix columns, while the focal length of the other image of the pair is found by applying the constraint on the matrix rows
Owner:MICROSOFT TECH LICENSING LLC

Optical element

The focal distance can be greatly changed by performing an electrical control in an optical element. The optical element comprises a first substrate having a first electrode, a second substrate, a second electrode arranged outside the second substrate, and a liquid crystal layer provided between the first substrate and the second substrate and constituted by liquid crystal molecules oriented. A first voltage is applied between the first electrode and the second electrode, thereby controlling the orientation of the liquid crystal molecules, whereby the optical element operates. A third electrode is provided on an insulating layer and outside the second electrode. A second voltage independent of the first voltage is applied to the third electrode, thereby changing the optical properties.
Owner:JAPAN SCI & TECH CORP

Compact electronic viewfinder

An electronic viewfinder with a reflective microdisplay and associated optical elements in a design that utilizes one or more folded optical paths to achieve a compact size and volume that may have a dimension of less than 10 millimeters per side. Moreover, the optical design may have an effective focal length that is greater than the spacing of the optical elements from the microdisplay. Various embodiments include a pancake window arrangement with reflective surfaces that are spaced apart from each other and cube beamsplitter eyepieces with folded paths.
Owner:CITIZEN FINETECH MIYOTA CO LTD

Image processing method and device, and program

In image processing of multi-viewpoint image data including image data captured with different focal lengths, an image of high quality, distance information with high precision, etc., are obtained by utilizing image data with different angles of view (focal lengths). An image processing device for generating combined image data using multi-viewpoint image data including image data acquired with different focal lengths, includes a resolution converting unit configured to perform resolution conversion for at least part of image data in multi-viewpoint image data in accordance with a focal length to be output and an image combining unit configured to generate combined image data with the focal length to be output using the resolution-converted image data.
Owner:CANON KK

Compact light-mixing LED light engine and white LED lamp with narrow beam and high cri using same

A directional lamp comprises a light source, a beam forming optical system configured to form light from the light source into a light beam, and a light mixing diffuser arranged to diffuse the light beam. The light source, beam forming optical system, and light mixing diffuser are secured together as a unitary lamp. The beam forming optical system includes: a collecting reflector having an entrance aperture receiving light from the light source and an exit aperture that is larger than the entrance aperture, and a lens disposed at the exit aperture of the collecting reflector, the light source being positioned along an optical axis of the beam forming optical system at a distance from the lens that is within plus or minus ten percent of a focal length of the lens.
Owner:SAVANT TECH LLC

Wide-angle irradiation feed source device with parasitic matched media and microwave antenna

The invention relates to a wide-angle irradiation feed source device with parasitic matched media and a microwave antenna. The wide-angle irradiation feed source device with the parasitic matched media comprises components such as guided wave media, the parasitic matched media, metal reflecting surfaces, reflective matching steps and the like. The parasitic matched media are arranged on the lateral surfaces of the guided wave media. The metal reflecting surfaces are formed on the upper surfaces of the guided wave media. The reflective matching steps are positioned at the bottom ends of the metal reflecting surfaces. Primary reflecting regions are positioned between the guided wave media and the parasitic matched media. Secondary reflecting regions are positioned outside the parasitic matched media, and are parallel to the primary reflecting regions. One end of each circular waveguide is inserted between the corresponding guided wave medium and the corresponding parasitic matched medium. The microwave antenna comprises a paraboloid and the wide-angle irradiation feed source device with the parasitic matched media. One end of the wide-angle irradiation feed source device with the parasitic matched media is fixed at the top end of the paraboloid. The feed source device provided by the invention is in fit with the short-focus paraboloid to realize the high-performance and low-profile microwave antenna, and the manufacturing cost is effectively reduced.
Owner:赵铭

Methods and Apparatus for Full-Resolution Light-Field Capture and Rendering

Method and apparatus for full-resolution light-field capture and rendering. A radiance camera is described in which the microlenses in a microlens array are focused on the image plane of the main lens instead of on the main lens, as in conventional plenoptic cameras. The microlens array may be located at distances greater than f from the photosensor, where f is the focal length of the microlenses. Radiance cameras in which the distance of the microlens array from the photosensor is adjustable, and in which other characteristics of the camera are adjustable, are described. Digital and film embodiments of the radiance camera are described. A full-resolution light-field rendering method may be applied to light-fields captured by a radiance camera to render higher-resolution output images than are possible with conventional plenoptic cameras and rendering methods.
Owner:ADOBE INC

Zoom by multiple image capture

An image sensor assembly includes a fixed focal length optical lens; a mirror that reflects light from the scene to an optical lens and moves into a plurality of positions; and an image sensor that receives the light after it passes through the optical lens and captures a plurality of images that represents each image captured from each position of the mirror; wherein at least portions of the plurality of images are stitched together to form a composite image with a desired zoom factor.
Owner:MONUMENT PEAK VENTURES LLC

Adaptive liquid crystal lenses

ActiveUS6859333B1Sharp and clean imageMountingsNon-linear opticsCamera lensPlanar substrate
An adaptive optical lens device, system and method of using the same is composed of at least two planar substrates and at least one homogeneous nematic liquid crystal (LC) layer. One planar substrate has a spherical or annular ring-shaped Fresnel grooved transparent electrode within it, the other has a transparent electrode coated on its inner surface. The thickness of the LC layer is uniform. When a voltage is applied across the LC layer, a centro-symmetrical gradient distribution of refractive index within LC layer will occur. Therefore, the LC layer causes light to focus. By controlling the applied voltage, the focal length of the lens is continuously tunable.
Owner:UNIV OF CENT FLORIDA RES FOUND INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products