Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1792 results about "Reflective surfaces" patented technology

Reflective surfaces can deliver high solar reflectance (the ability to reflect the visible, infrared and ultraviolet wavelengths of the sun, reducing heat transfer to the surface) and high thermal emittance (the ability to radiate absorbed, or non-reflected, solar energy). Reflective surfaces are a form of geoengineering.

Optical communication device provided with a reflector and method for forming a reflector in an optical communication device

An optical communication device of the invention includes a reflector for reflecting the light that has reached one end surface of a waveguide chip to turn the optical path of the light. The reflector includes a transparent thin film layer formed on one end surface of the waveguide chip by using a material to which a metal that forms an intermetallic compound or the like with Au is added to a substance that is transparent to the light that propagates through the waveguide, as well as an Au thin film layer formed on the front surface of the transparent thin film layer. This allows formation of a reflector having an Au thin film layer as a reflecting surface in an optical medium with high adhesion strength. Thus, an optical communication device can be provided having a high reliability with little loss.
Owner:FUJITSU LTD

Trough reflectors for solar energy collectors

A trough reflector for solar energy collection is constructed from transverse ribs which support a reflective surface. Side edge support rails mounted on ends of the ribs support linear edges of the reflective surface. The edge support rails have a channel-like construction with an inner flange member which is in contact with a top of the reflective surface, and a lip member extending from an outer flange member. The edge region of the reflective surface rests on the lip member with the edge of the reflective surface in contact with the outer flange member. A turning moment is applied to the edge regions of the reflective surface to ensure that the entire reflective surface is parabolic. An arcuate profile of ribs of the trough reflector is converted into a parabolic profile by the application of a force to the ends of the ribs.
Owner:MIRALITE

Imaging Light Guide With Reflective Turning Array

An imaging light guide has a waveguide and an in-coupling diffractive optic formed on the waveguide and disposed to direct image-bearing light beams into the waveguide. An array of two or more at least partially reflective surfaces are oriented in parallel and disposed to expand the image-bearing light beams from the in-coupling diffractive optic in a first dimension and to direct the expanded image-bearing light beams toward an out-coupling diffractive optic. The out-coupling diffractive optic is formed on the waveguide and disposed to expand the image-bearing light beams in a second dimension orthogonal to the first dimension and to direct the image-bearing light beams toward a viewer eyebox.
Owner:VUZIX

Scanning interferometer for aspheric surfaces and wavefronts

Interferometric scanning method(s) and apparatus for measuring rotationally and non-rotationally symmetric test optics either having aspherical surfaces or that produce aspherical wavefronts. A spherical or partial spherical wavefront is generated from a known origin along an optical axis. The test optic is aligned with respect the optical axis and selectively moved along it relative to the known origin so that the spherical wavefront intersects the test optic at the apex of the aspherical surface and at radial positions where the spherical wavefront and the aspheric surface intersect at points of common tangency. An axial distance, ν, and optical path length, p, are interferometrically measured as the test optic is axially scanned by the spherical wavefront where ν is the distance by which the test optic is moved with respect to the origin and p is the optical path length difference between the apex of an aspherical surface associated with the test optic and the apex of the circles of curvature that intersect the aspherical surface at the common points of tangency. Coordinates of the aspherical surface are calculated wherever the circles of curvature have intersected the aspherical surface and in correspondence with the interferometrically measured distances, ν and p. Afterwards, the shape of the aspheric surface is calculated. Where the test optic comprises a refracting optic a known spherical reflecting surface is provided upstream of the refracting optic for movement along the optical axis and a known wavefront is made to transit the refracting optic, reflects from the known spherical surface, again transits the refracting optic traveling towards the known origin after which the interferogram is formed. In another aspect of the invention, a spherical reference surface is provided to form a Fizeau that is used to generate phase information for measuring spheres, mild aspheres, and multiple mild aspheres.
Owner:ZYGO CORPORATION

Polarizing turning film using total internal reflection

A light redirecting article redirects light toward a target angle. The light redirecting article has an input surface for accepting incident illumination over a range of incident angles and an output surface with a plurality of light redirecting structures, each light redirecting structure having an internal reflection surface oriented at a first angle with respect to the plane of the input surface and an exit surface for emitting an output light at an emitted light angle, wherein the exit surface is oriented at a second angle relative the plane of the input surface. For incident illumination at a principal angle greater than 60 degrees from normal, light is reflected from the internal reflection surface and emitted from the exit surface at an emitted light angle that is within 5 degrees of the target angle.
Owner:SK MICROWORKS SOLUTIONS CO LTD

Optical interferometric pressure sensor

A capacitive vacuum measuring cell has a first housing body and a membrane, both of Al2O3 ceramic or sapphire. The membrane is planar with a peripheral edge joined by a first seal to the first housing body to form a reference vacuum chamber. A second housing body of Al2O3 ceramic or sapphire opposite the membrane, is joined to the peripheral edge of the membrane by a second seal to form a measurement vacuum chamber. A port connects the vacuum measuring cell to a medium to be measured. At least in the central area of the first housing body, an optical transparent window is formed and at least the central region of the membrane has an optically reflective surface. Outside the reference vacuum chamber, in opposition to and at a distance from the window, an optical fibre is arranged for feeding in and out light onto the surface of the membrane.
Owner:INFICON GMBH

Reduced angular emission cone illumination leds

A light emitting diode (LED) package includes a support, an LED die mounted on the support, a reflector around the LED die, and a lens over the LED die. The reflector has an angled reflective surface that limits the light emission angle from the LED package. The reflector is a part of the lens or the support.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV +1

Augmented reality eyewear

Eyewear for displaying a virtual image comprising first and second lenses, a light source in optical communication with at least one of the lenses, and a reflective surface situated within at least one of the lenses and configured to direct light projected into the lens from the light source toward a corresponding eye of the wearer for display as a virtual image. Another eyewear comprising a lens(es) configured to display a virtual image, a frame for supporting the lens(es) within a field of vision of the wearer, and electronics for operating the eyewear, the electronics being integrally embedded within one or more components of the frame.
Owner:LAFORGE OPTICAL INC

Vehicle headlamp

ActiveUS20100194276A1Dispersion errorReliably achieveVehicle headlampsPoint-like light sourcePower savingHeadlamp
A vehicle headlamp is provided with: a fixed reflector having reflecting surfaces made of parabola-based free curved faces; movable reflectors having reflecting surfaces made of parabola-based free curved faces; and semiconductor-type light sources having light emitting chips shaped like a planar rectangle. When the movable reflectors are positioned in a first location, a light distribution pattern for low beam is obtained. When the movable reflectors are positioned in a second location, light distribution patterns for high beams are obtained. When the movable reflectors are positioned in a third location, light distribution patterns for daytime running light are obtained. As a result, the vehicle headlamp can achieve downsizing, weight reduction, power saving, and cost reduction.
Owner:ICHIKOH IND LTD

Lighting unit reflector

A lighting unit that includes a light source and a reflector assembly upon which the light source is mounted. The reflector assembly includes a first reflector having a first curved reflective surface extending away from the light source, and a second reflector having a second curved reflective surface extending away from the light source. The first curved reflective surface faces and opposes the second curved reflective surface. The first curved reflective surface has a curvature that is different from that of the second curved reflective surface. The first and second curved reflective surfaces both preferably terminate in convexities that reduce the size of dark band areas of illumination.
Owner:LEOTEK ELECTRONICS

Optical system for a fundus camera

InactiveUS20100014052A1Suppression of blurDimension of can be minimizeEye diagnosticsOptical elementsCatoptricsDioptre
The invention is directed to an optical system for a fundus camera for reflection-free opthalmoscopy having a beam path with refractive and reflective optical elements which are used substantially in common for illumination and observation or recording. An imaging mirror system substantially comprising a plurality of reflecting optical elements in the form of mirrors and is provided for illuminating and imaging the fundus. At least one optical element, for example, mirror, is formed as a freeform mirror with an imaging, reflecting freeform surface. The optical elements are arranged in a housing in a precisely defined position and attitude relative to one another in such a way that an imaging of the reflecting surfaces of the optical elements on the image of the imaged retina is prevented within a wide diopter range of the patient's eye to be examined.
Owner:CARL ZEISS MEDITEC AG

Flashlight with lens for transmitting central and off-axis light sources

A flashlight has a lens having an optical axis, with a first light source positioned on the optical axis. A second light source is spaced apart from the first light source away from the optical axis, and the lens has an aperture registered with the second light source. The lens may have a central portion configured to transmit axially-emitted light from the first light source, and the lens having a peripheral portion having an internally reflective surface configured to reflect laterally-emitted light from the light source in a direction more closely aligned with the optical axis. The first light source may be positioned within a recess in the lens, and the aperture may be formed in the peripheral portion of the lens. The light sources may be LEDs, and may be of different colors.
Owner:SUREFIRE LLC

Optical device and method for shape and gradient detection and/or measurement and associated device

Provided are: an optical device for shape and gradient detection and/or measurement which has a simple structure, is robust to external disturbance, and enables accurate measurement of the gradient angle of an object surface, including a human body; a method for optical shape and gradient detection and/or measurement; and a circularly polarized light illumination device. The optical device for shape and gradient detection and/or measurement uses the optical reflection characteristics of the surface of an object to detect and/or measure the surface shape or gradient of an observed object, and is provided with an illumination device and a polarized light image detection device. The illumination device makes the incident light, which surrounds the periphery of the object and is essentially a known perfect polarized light, fall uniformly. The polarized light image detection device detects a polarized light ellipse of the perfectly polarized light component of a light beam group, which is specularly reflected by the object surface and radiated at a particular azimuth angle. The optical device measures the gradient angle with respect to the radiated light beam of the reflection surface in a step 1 in which the orientation of the incident plane is detected from the observed azimuth angle value of the polarized light ellipse for the reflecting surface of the object which forms an incident point for each reflected and radiated light beam, and a step 2 in which the incident angle is detected from the ellipticity logic value of the polarized light ellipse. The method for optical shape and gradient detection and/or measurement is carried out using the same operation.
Owner:TOHOKU UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products