Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

5492 results about "Optical switch" patented technology

An optical switch is a device that selectively switches optical signals on or off or from one channel to another. The former is known as an optical (time-domain) switch or an optical modulator, while the latter is called an optical space switch or an optical router. Since the switching can be temporal or spatial, such switches are analogous to one-way or two-way switches in electrical circuits. In general, optical modulators and routers can be made from each other.

Advanced continuous analyte monitoring system

Systems and methods for processing, transmitting, and displaying data received from a continuous analyte (e.g., glucose) sensor are provided. A sensor system can comprise a sensor electronics module that includes power saving features, e.g., a low power measurement circuit that can be switched between a measurement mode and a low power mode, wherein charging circuitry continues to apply power to electrodes of a sensor during the low power mode. The sensor electronics module can be switched between a low power storage mode and a higher power operational mode via a switch, e.g., a reed switch or optical switch. A validation routine can be implemented to ensure an interrupt signal sent from the switch is valid. The sensor can be physically connected to the sensor electronics module in direct wireless communication with a plurality of different display devices.
Owner:DEXCOM

Advanced continuous analyte monitoring system

Systems and methods for processing, transmitting, and displaying data received from a continuous analyte (e.g., glucose) sensor are provided. A sensor system can comprise a sensor electronics module that includes power saving features, e.g., a low power measurement circuit that can be switched between a measurement mode and a low power mode, wherein charging circuitry continues to apply power to electrodes of a sensor during the low power mode. The sensor electronics module can be switched between a low power storage mode and a higher power operational mode via a switch, e.g., a reed switch or optical switch. A validation routine can be implemented to ensure an interrupt signal sent from the switch is valid. The sensor can be physically connected to the sensor electronics module in direct wireless communication with a plurality of different display devices.
Owner:DEXCOM

High data rate interconnecting device

InactiveUS7315224B2Minimize impedance mismatchConsiderable immunity to external interferenceCoupling for high frequencyPrinted circuit detailsData signalEngineering
An interconnect apparatus for providing a communication path for data signals in a predetermined frequency band, that includes a first and a second sections of a transmission line, connected at one end to first and second data transceiving devices, respectively. A switch, such as a mechanical, electro-mechanical, electronic, electro-magnetic and electro-optical switch, having conductive / non-conductive states, is provided for connecting / disconnecting between the other ends of the first and the second sections, for providing a data communication path between the data transceiving devices while being in its conductive state a third and a fourth sections of a transmission line, each of which connected at one end to a contact of the switch and at the other end to a first and a second connector, respectively. A compensation circuitry is provided for compensating, within the frequency band, parasitic effects caused by the switch and / or cord, while the switch is in its conductive state or, while the switch is in its non-conductive state and while a connection between the first and the second connectors is provided by a cord having predetermined characteristics, such that the compensation circuitry compensates the influence of parasitic effects introduced along the communication path by the switch while being in its non-conductive state and while the cord is a part of the communication path or, by the combination of the third and a fourth sections and the connectors while the switch is in its conductive state.
Owner:RIT TECHNOLOGIES

Resonator modulators and wavelength routing switches

The invention provides an optical switch and modulator which uses a closed loop optical resonator. The optical resonator is a dielectric cavity whose primary function is to store optical power. Various structures are possible, and a particularly advantageous one is a ring shaped cavity. The wavelength response at the output port of a ring resonator side coupled to two waveguides is determined by the details of the resonator, and the coupling between the resonator and the waveguides. By coupling to adjacent resonators, the modulator response can be improved over that of a single resonator. One such improvement is in modulator efficiency, which is defined as the ratio of the change in optical intensity at the output, to a change in absorption in the ring waveguides. Absorption is used for switching and modulation without incurring significant optical attenuation. Another improvement involves making the resonance insensitive to small deviations in wavelength or index change. The latter improves fabrication tolerances and compensates for possible drift of the signal wavelength. Collectively, the behavior of multiple coupled resonators yields higher order responses.
Owner:MASSACHUSETTS INST OF TECH

Mach-Zehnder interferometer using photonic band gap crystals

A photonic crystal optical switch having a periodic dielectric structure including at least one input waveguide. First and second waveguide arms branch from the input waveguide in which the relative optical path lengths of electromagnetic radiation within the arms are controlled by stimuli. At least one output waveguide that combines the electromagnetic radiation propagating within the first and second waveguide arms.
Owner:MASSACHUSETTS INST OF TECH

Protection switching for an optical network, and methods and apparatus therefor

An optical communications network having at least one optical switch connected to a network access device. The optical switch includes a first line card disposed along a first communications path over which a first optical signal is transmitted. The first line card is connected to the network access device. A second line card is disposed along a second communications path over which a second optical signal is transmitted. An inter-card communication channel is provided for bridging the second path to the first line card. The system enables the rapid switching of traffic from the first optical path to the second optical path.
Owner:FIRSTWAVE SECURE INTELLIGENT OPTICAL NETWORKS

Methods and apparatus for sorting cells using an optical switch in a microfluidic channel network

Apparatus and Methods are provided for a microfabricated fluorescence activated cell sorter based on an optical switch for rapid, active control of cell routing through a microfluidic channel network. This sorter enables low-stress, highly efficient sorting of populations of small numbers of cells (i.e., 1000-100,000 cells). The invention includes packaging of the microfluidic channel network in a self-contained plastic cartridge that enables microfluidic channel network to macro-scale instrument interconnect, in a sterile, disposable format.
Owner:PROGENITY INC

Optical Transceiver Device

An optical transceiver device is provided, including an O / E transceiver module, an optical switching module and a switching control module, for providing network communication services for a first and a second optical fiber network equipment. The O / E transceiver module is an integrated chip having multiple transceiver units integrated therein. The switching control module is connected to an in-line equipment and the optical switching module for controlling the optical switching module to execute corresponding optical path switching operation according to an optical path switching control signal output from the inline equipment. In comparison with conventional optical transceiver devices, the invention is advantageous of simple structure, smaller volume and more flexible optical path switching.
Owner:AGILEIOTS INVESTMENT CO LTD

Controllable-load circuit for use with a load control device

A load control device for controlling the amount of power delivered from an AC power source to an electrical load is operable to conduct enough current through a thyristor of a connected dimmer switch to exceed rated latching and holding currents of the thyristor. The load control device comprises a controllable-load circuit operable to conduct a controllable-load current through the thyristor of the dimmer switch. The load control device disables the controllable-load circuit when the phase-control voltage received from the dimmer switch is a reverse phase-control waveform. When the phase-control voltage received from the dimmer switch is a forward phase-control waveform, the load control device is operable to decrease the magnitude of the controllable-load current so as to conduct only enough current as is required in order to exceed rated latching and holding currents of the thyristor.
Owner:LUTRON TECH CO LLC

Optical device utilizing optical waveguides and mechanical light-switches

An optical device consists of one or more optical waveguides and mechanical light switches 30. When a light switch 30 is turned on, it extracts light beam 62a from a waveguide core 20 and redirect the light beam 62b into free space, it redirects an incoming light beam 80 from free space and injects the light beam 80a into the waveguide core 20, or it performs both functions at the same time, depending on specific applications. On and off states of a light switch 30 are achieved by pulling the light switch 30 into a close vicinity of the waveguide core 20 and by pushing the light switch 30 away from the waveguide core 20, respectively. An interactive fiat-panel display can be built based on this invention. A plurality of parallel channel waveguides forms a display panel. An array of light beams 62a, injected from an array light source 60, propagates along waveguide cores 20 until reaches a location where a light switch 30 is turned on. At this location, the light switch 30 redirects the light beams towards a viewer. An image is produced when the light switches 30 are turned on sequentially while the light-intensity distribution on the array light source 60 is synchronically updated. The panel display is capable of responding to an input optical signal by detecting an incoming light beam 80 from a light pen 100. An array of photodetectors 81 is used to identify the location of the incoming light beam 80 on the display panel and a computer is used to execute a corresponding action accordingly.
Owner:LIFE TECH CORP

Micromechanical and related lidar apparatus and method, and fast light-routing components

Several systems and a method are taught for rapid modulation of a light beam in lidar and other imaging. Most of these involve micromechanical and other very small control components. One such unit is a light-switching fabric, based on displacement of liquid in a tube that crosses a junction of two optical waveguides. In some forms, the fabric is preferably flexible to enable folding or coiling to form a two-dimensional face that interacts with optical-fiber ends an opposed fiber bundle. The rapid operation of the switch fabric enables it to be used as a beam-splitter, separating incoming and return beams; and also to form pulses from supplied CW light. Other control components include micromechanical mirrors (e. g. MEMS mirrors) operated in arrays or singly, liquid-crystal devices, and other controlled-birefringence cells. Some of these devices are placed within an optical system for directional light-beam steering.
Owner:ARETE ASSOCIATES INC

Dynamic route discovery for optical switched networks using peer routing

An architecture and method for performing dynamic route discovery and time slot reservation provisioning within optical-switched networks. The method employs extensions to the RSVP-TE signaling protocol, which uses various messages to reserve resources. Under a peer routing embodiment, routing trees and resource availability data are maintained by the edge nodes. A lightpath route is dynamically selected based on selection criteria applied to the routing tree data and the availability of resources along the lightpath. Link state information, including resource reservation data, is broadcast by the switching nodes to update the edge nodes of their resource availability. A resource reservation message is passed between nodes defined by an explicit route contained in the message, and resource availability is confirmed for the entire lightpath prior to confirming the resource reservations.
Owner:INTEL CORP

Device based on coated nanoporous structure

A nanostructured apparatus may include a mesoporous template having an array of regularly-spaced pores. One or more layers of material may conformally coat the walls to a substantially uniform thickness. Such an apparatus can be used in a variety of devices including optoelectronic devices, e.g., light emitting devices (such as LEDs, and lasers) and photovoltaic devices (such as solar cells) optical devices (luminescent, electro-optic, and magnetooptic waveguides, optical filters, optical switches, amplifies, laser diodes, multiplexers, optical couplers, and the like), sensors, chemical devices (such as catalysts) and mechanical devices (such as filters for filtering gases or liquids).
Owner:AERIS CAPITAL SUSTAINABLE IP

Optical switch and method for assembling the same

An optical switch includes a substrate having therein optical waveguides made of silicon and a silicon layer deposited on its top surface. A space is formed in the crossing portion of the optical waveguides which is covered with a lid, preferably made of low alkali borosilicate glass, and which is bonded to the silicon layer by anodic bonding. Preferably, a groove is formed in a surface of the optical waveguide substrate or a bonding surface of the lid. The groove, after the lid has been bonded, makes a passage which communicates between the space and an outside. The passage is a pouring slit for pouring an index-matching liquid and is connected to the space which acts as a driving slit in which the index-matching liquid moves. In one embodiment, the width of the pouring slit is smaller than that of the driving slit. The optical switch can be manufactured by providing an optical waveguide substrate and a lid substrate, one of which is formed with a groove in its surface on which the two substrates are bonded. The optical waveguide substrate and the lid substrate are bonded together by anodic bonding to make a passage which communicates between the space formed in a crossing portion of the optical waveguides and an outside. The regulation of the volume of the index-matching liquid is time-, temperature-, or pressure-based regulation.
Owner:NIPPON TELEGRAPH & TELEPHONE CORP

Optical switch and optical waveguide apparatus

Highly reliable optical switch and optical waveguide apparatus are obtained, which can perform stable and reliable ON / OFF operations for optical connection at a waveguide crossing portion. The optical switch is provided in an optical waveguide apparatus including a waveguide propagating light and a waveguide housing sheet enclosing the waveguide, and includes a slit portion slitting to traverse the waveguide; a driver performing driving action onto the slit portion; and a driver assistant member interposing the slit portion between the driver assistant member and the driver to assist the driver, the driver and driver assistant member pushing open the slit portion to provide a gap, and bring the slit portion into contact to connect waveguides.
Owner:MITSUBISHI ELECTRIC CORP

Nanocomposite microresonators

A microresonator is provided that incorporates a composite material comprising a polymer matrix and nanoparticles dispersed therein. The microresonator includes the composite material having a shape that is bounded at least in part by a reflecting surface. The shape of the microresonator allows a discrete electromagnetic frequency to set up a standing wave mode. Advantageously, the polymer matrix comprises at least one halogenated polymer and the dispersed nanoparticles comprise an outer coating layer, which may also comprise a halogenated polymer. Methods for making composite materials and microresonators are also provided. Applications include, for example, active and passive switches, add / drop filters, modulators, isolators, and integrated optical switch array circuits.
Owner:PHOTON

Modular three-dimensional optical switch

A modular three-dimensional (3D) optical switch that is scalable and that provides monitor and control of MEMS mirror arrays. A first switch module includes an array of input channels. Light beams received from the input channels are directed toward a first wavelength selective mirror. The light beams are reflected off of the first wavelength selective mirror and onto a first array of moveable micromirrors. The moveable micromirrors are adjusted so that the light beams reflect therefrom and enter a second switch module where they impinge upon a second array of moveable micromirrors. The light beams reflect off of the second array of moveable micromirrors and impinge upon a second wavelength selective mirror. The light beams reflect off of the second wavelength selective mirror and into an array of output channels. The alignment or misalignment of a data path through the switch is detected by directing two monitor beams through the data path, one in the forward direction and one in the reverse direction. The position of each of the monitor beams is detected after its reflection from the second moveable micromirror that it hits. The position data is used to determine the angles of the moveable micromirrors in the data path.
Owner:OMM +1

Method and architecture for security key generation and distribution within optical switched networks

A method and architecture for secure transmission of data within optical-switched networks. In one embodiment, the optical switched network comprises a photonic burst-switched (PBS) network. Under various schemes, security keys including encryption and decryption keys are generated by edge nodes and the decryption keys are distributed to other edge nodes in a PBS network. In one embodiment, the security keys are dynamically generated by a trusted platform module (TPM). A source edge node uses its encryption key to encrypt selected data bursts to be sent to a destination edge node via a virtual lightpath coupling the source and destination edge nodes. Security data are embedded in a control burst header indicates to the destination node whether corresponding data bursts sent via the virtual lightpath are encrypted. The security data also includes the decryption key and may also identify an encryption / decryption algorithm to be used. In some embodiments, public key infrastructure facilities are used in conjunction with employment of private and public keys and digital certificates.
Owner:TAHOE RES LTD

System for switching data using dynamic scheduling

An architecture and related systems for improving the performance of non-blocking data switching systems. In one embodiment, a switching system includes an optical switching core coupled to a plurality of edge units, each of which has a set of ingress ports and a set of egress ports. The switching system also contains a scheduler that maintains two non-blocking data transfer schedules, only one of which is active at a time. Data is transferred through the switching system according to the active schedule. The scheduler monitors the sufficiency of data transferred according to the active schedule and, if the currently active schedule is insufficient, the scheduler recomputes the alternate schedule based on demand data received from the edges / ports and activates the alternate schedule. A timing mechanism is employed to ensure that the changeover to the alternate schedule is essentially simultaneous among the components of the system.
Owner:UNWIRED BROADBAND INC

Method and system to recover resources in the event of data burst loss within WDM-based optical-switched networks

A mechanism for recovering reserved resources in a wavelength-division-multiplexed based photonic burst switched (PBS) network in response to resource non-availability. The PBS network includes edge and switching nodes, which optically communicate information formatted into PBS control and data burst frames. Each PBS data burst frame is associated with a PBS control burst frame. A PBS control burst is sent to reserve resources along a lightpath comprising a concatenation of lightpath segments linked between in ingress edge nodes, switching nodes and egress edge nodes. During a subsequent data burst, an unavailable resource is detected at one of the switching nodes. In response, a resource cancellation message (RCM) comprising a control burst is sent to upstream and / or downstream nodes along the lightpath. Upon receiving the RCM, the corresponding resource reservation is cancelled, freeing the network resources for subsequent bandwidth reservations and access.
Owner:INTEL CORP

Optical switch with moveable holographic optical element

An optical switch formed of a holographic optical element (HOE) disposed above a top surface of a substrate and moveable relative thereto is shown. Light is traveling through the substrate under total internal reflection, which creates an evanescent field extending beyond the reflecting surfaces of the substrate. The HOE is characterized, in one embodiment, by being formed from a plurality of strips that are moveable between a first position in which the strips are above the evanescent field and a second position in which the strips are inside the evanescent field. In the first position, the light in the substrate propagates unaffected by the HOE in a primary direction of propagation. In the second position, the light in the substrate is altered by the HOE and made to propagate in a reflected direction oblique to that of the primary direction of propagation.
Owner:ROSEMOUNT INC

Apparatus and method for testing optical fiber system components

An optical switching assembly selectively connects an optical source and a detector to at least one fiber optic device. The assembly includes first and second groups of optical paths, and first and second optical switches. The first optical switch selectively connects the optical source to one end of the first group of optical paths, and the second optical switch selectively connects the detector to the one end of the second group of optical paths. The assembly laos includes a plurality of junctions, each having a lead associated therewith, and one or more of the leads are connected to the fiber optic device. The junctions connect the other end of the first group of optical paths and the other end of the second group of optical paths to the lead to facilitate the testing of the fiber optic device.
Owner:BLOOM CARY

QKD system network

QKD system networks (50, 200, 300) and methods of communicating between end-users (P1, P2) over same are disclosed. An example QKD system network (50) includes a first QKD station (A1) and a second QKD station (A2) with a relay station (58) in between. The relay station includes a single third QKD station (B) and an optical switch (55). The optical switch allows the third QKD station to alternately communicate with the first and second QKD stations so as to establish a common key between the first and second QKD stations. The end-users are coupled to respective QKD stations A1 and A2. A secret key (S) is shared between P1 and P2 by QKD station B being able to independently form keys with A1 and A2. This basic system, represented as P1-A1-B-A2-P2, can be expanded into more complex linear networks, such as P1-A1-B1-A2-B2-P2 with B1 and A2 making up the relays. The basic QKD system network can also be expanded into multi-dimensions.
Owner:MAGIQ TECH INC

Distributed disturbance sensing device and the related demodulation method based on polarization sensitive optical frequency domain reflectometry

This invention relates to a distributed disturbance sensing device based on polarization sensitive optical frequency domain reflectometry (OFDR) and the related demodulation thereof. The device, adopting OFDR, polarization controlling and analysis techniques, consists of a ultra-narrow linewidth tunable laser source module, polarization generating and polarization splitting balanced detecting module, laser source optical frequency and phase monitoring module, high-speed optical switch and so on to establish a large-scale and long-distance optical sensing network. The demodulation method consists of analysis the polarization information from sensing optical fiber, the method of suppressing and compensating of the non-linear optical frequency and the laser phase noise, super-resolution analyzing, advanced denoising method and the polarization information analysis method based on Jones and Mueller's matrices using distributed wave plate model of optical fiber.
Owner:TIANJIN UNIV

Systems and methods for path set-up in a quantum key distribution network

A system establishes a path for distributing data through an optical network (115). The system includes an optical switch (205a) and a data distribution endpoint (105a). The optical switch (205a) establishes a first encryption key distribution path through the optical network (115), the first encryption key distribution path including multiple optical switches and optical links. The data distribution endpoint (105a) determines whether eavesdropping has occurred on the first encryption key distribution path using quantum cryptography. The optical switch (205a) further establishes a second data distribution path through the optical network (115) responsive to the eavesdropping determination. The second encryption key distribution path includes multiple optical switches and optical links.
Owner:RAYTHEON BBN TECH CORP

Ethernet private local area network systems and methods

The present disclosure provides hybrid packet-optical private network systems and methods for a private and dedicated multi-point Ethernet Private Local Area Network (EPLAN). The network systems and methods include a Layer 1 infrastructure service with the inclusion of reserved, dedicated packet switch capacity upon which clients can build their personal, private packet networks. In the systems and methods described herein, packet networking methods are not used to partition the isolated LAN connectivity. Instead, dedicated Ethernet Private LANs (EPLs) are defined between dedicated virtual switching instances (VSIs) that are defined, as necessary, within larger packet-optical switches. Each VSI is partitioned from the remainder of its packet switch fabric as a dedicated, private resource for a specific EPLAN. A packet network is then built by the customer on top of the private EPLAN bandwidth and operated as an isolated, private network with no influence by other carrier's network resources.
Owner:CIENA

Micromechanical optical switch

An optical switch element is described, which includes a fixed layer disposed outwardly from a substrate and a movable mirror assembly disposed outwardly from the fixed layer. The moveable mirror assembly is operable to move relative to the fixed layer responsive to a voltage applied to the movable mirror assembly. In a particular embodiment, the movable mirror assembly includes an inner strip spaced apart from the fixed layer by a first distance and an outer strip disposed approximately adjacent to the inner strip and spaced apart from the fixed layer by a second distance which is greater than the first distance. The optical transmission of the optical switch element changes depending on the position of the movable mirror assembly.
Owner:CHEETAH OMNI

Communication recovering system for wavelength division multiplexed passive optical network

ActiveUS20060104638A1Enhance economical efficiencyMargin is maximizedLaser detailsOptical multiplexTransceiverNetwork structure
A communication recovering system for a wavelength division multiplexed passive optical network (WDM PON). The communication recovering system can recover fault of optical fibers between the central office and the remote nodes without additional optical fibers by grouping two remote nodes and employing an AWG having periodic transmission characteristics, and can also simply and rapidly recover such a fault with minimal optical loss using an AWG of 2×N structure and an On-Off optical switch, although protection optical fibers are additionally installed therein. The system can rapidly recover fault of optical fibers between a local office and optical network units, 1:N manner, using 2×2 optical switches, which are installed to each of the optical network units, a reserved transmitter and receiver, and a transceiver. The communication recovering system has advantages in that it can simplify network structure, be cost-effectively implemented, reduce optical loss, and rapidly perform protection of optical fiber fault.
Owner:KOREA ADVANCED INST OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products