Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

25015 results about "Frequency domain" patented technology

In electronics, control systems engineering, and statistics, the frequency domain refers to the analysis of mathematical functions or signals with respect to frequency, rather than time. Put simply, a time-domain graph shows how a signal changes over time, whereas a frequency-domain graph shows how much of the signal lies within each given frequency band over a range of frequencies. A frequency-domain representation can also include information on the phase shift that must be applied to each sinusoid in order to be able to recombine the frequency components to recover the original time signal.

Fiber optic position and shape sensing device and method relating thereto

The present invention is directed toward a fiber optic position and shape sensing device and the method of use. The device comprises an optical fiber means. The optical fiber means comprises either at least two single core optical fibers or a multicore optical fiber having at least two fiber cores. In either case, the fiber cores are spaced apart such that mode coupling between the fiber cores is minimized. An array of fiber Bragg gratings are disposed within each fiber core. A broadband reference reflector is positioned in an operable relationship to each fiber Bragg grating wherein an optical path length is established for each reflector / grating relationship. A frequency domain reflectometer is positioned in an operable relationship to the optical fiber means. In use, the device is affixed to an object. Strain on the optical fiber is measured and the strain measurements correlated to local bend measurements. Local bend measurements are integrated to determine position or shape of the object.
Owner:LUNA INNOVATIONS

Multicarrier Sub-Layer for Direct Sequence Channel and Multiple-Access Coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and / or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.
Owner:GENGHISCOMM HLDG

Multicarrier sub-layer for direct sequence channel and multiple-access coding

Carrier Interferometry (CI) provides wideband transmission protocols with frequency-band selectivity to improve interference rejection, reduce multipath fading, and enable operation across non-continuous frequency bands. Direct-sequence protocols, such as DS-CDMA, are provided with CI to greatly improve performance and reduce transceiver complexity. CI introduces families of orthogonal polyphase codes that can be used for channel coding, spreading, and / or multiple access. Unlike conventional DS-CDMA, CI coding is not necessary for energy spreading because a set of CI carriers has an inherently wide aggregate bandwidth. Instead, CI codes are used for channelization, energy smoothing in the frequency domain, and interference suppression. CI-based ultra-wideband protocols are implemented via frequency-domain processing to reduce synchronization problems, transceiver complexity, and poor multipath performance of conventional ultra-wideband systems. CI allows wideband protocols to be implemented with space-frequency processing and other array-processing techniques to provide either or both diversity combining and sub-space processing. CI also enables spatial processing without antenna arrays. Even the bandwidth efficiency of multicarrier protocols is greatly enhanced with CI. CI-based wavelets avoid time and frequency resolution trade-offs associated with conventional wavelet processing. CI-based Fourier transforms eliminate all multiplications, which greatly simplifies multi-frequency processing. The quantum-wave principles of CI improve all types of baseband and radio processing.
Owner:GENGHISCOMM HLDG

System and method for estimating high time-frequency resolution eeg spectrograms to monitor patient state

A system and method for monitoring a patient includes a sensor configured to acquire physiological data from a patient and a processor configured to receive the physiological data from the at least one sensor. The processor is also configured to apply a spectral estimation framework that utilizes structured time-frequency representations defined by imposing, to the physiological data, a prior distributions on a time-frequency plane that enforces spectral estimates that are smooth in time and sparse in a frequency domain. The processor is further configured to perform an iteratively re-weighted least squares algorithm to perform yield a denoised time-varying spectral decomposition of the physiological data and generate a report indicating a physiological state of the patient.
Owner:BROWN EMERY N +3

Small array microphone for acoustic echo cancellation and noise suppression

Techniques for canceling echo and suppressing noise using an array microphone and signal processing. In one system, at least two microphones form an array microphone and provide at least two microphone input signals. Each input signal may be processed by an echo canceller unit to provide a corresponding intermediate signal having some echo removed. An echo cancellation control unit receives the intermediate signals and derives a first gain used for echo cancellation. A noise suppression control unit provides at least one control signal used for noise suppression based on background noise detected in the intermediate signals. An echo cancellation and noise suppression unit derives a second gain based on the control signal(s), cancels echo in a designated intermediate signal based on the first gain, and suppresses noise in this intermediate signal based on the second gain. The signal processing may be performed in the frequency domain.
Owner:FORTEMEDIA

Systems and methods of monitoring a patient through frequency-domain photo migration spectroscopy

FDPM processing provides an amplitude signal and a phase signal at a modulation frequency to improve measurement fidelity during measurement of one or more blood parameters. In an embodiment, a light source modulates light at a modulation frequency around 200 MHz to produce an amplitude and phase plethysmograph, usable to access clinical test data.
Owner:MASIMO CORP

Apparatus for OFDMA transmission and reception for coherent detection in uplink of wireless communication system and method thereof

In the resource mapping method for data transmission, a time-frequency resource of a slot interval including OFDM symbols is divided into traffic channels and shared among the subscribers, the traffic channel including resource blocks uniformly distributed in the whole transmit frequency band, the resource block including consecutive subcarriers of consecutive received symbols having at least one inserted pilot symbol. The pilot symbols and the channel-encoded and modulated data symbols are processed by time-frequency mapping according to the resource-block-based mapping method to generate received symbols. The receiver separates the received symbols by subscribers according to the resource-block-based mapping method in a frequency domain, and performs iterative channel estimation, demodulation, and decoding by using the pilot and a data reference value after decoding for each traffic channel.
Owner:ELECTRONICS & TELECOMM RES INST

Frequency encoding of resonant mass sensors

A method for the detection of analytes using resonant mass sensors or sensor arrays comprises frequency encoding each sensor element, acquiring a time-domain resonance signal from the sensor or sensor array as it is exposed to analyte, detecting change in the frequency or resonant properties of each sensor element using a Fourier transform or other spectral analysis method, and classifying, identifying, and / or quantifying analyte using an appropriate data analysis procedure. Frequency encoded sensors or sensor arrays comprise sensor elements with frequency domain resonance signals that can be uniquely identified under a defined range of operating conditions. Frequency encoding can be realized either by fabricating individual sensor elements with unique resonant frequencies or by tuning or modifying identical resonant devices to unique frequencies by adding or removing mass from individual sensor elements. The array of sensor elements comprises multiple resonant structures that may have identical or unique sensing layers. The sensing layers influence the sensor elements' response to analyte. Time-domain signal is acquired, typically in a single data acquisition channel, and typically using either (1) a pulsed excitation followed by acquisition of the free oscillatory decay of the entire array or (2) a rapid scan acquisition of signal from the entire array in a direct or heterodyne configuration. Spectrum analysis of the time domain data is typically accomplished with Fourier transform analysis. The methods and sensor arrays of the invention enable rapid and sensitive analyte detection, classification and / or identification of complex mixtures and unknown compounds, and quantification of known analytes, using sensor element design and signal detection hardware that are robust, simple and low cost.
Owner:PALO ALTO SENSOR TECH INNOVATION

Personal choice biometric signature

InactiveUS7013030B2Improved high security method and systemEasy to useElectric signal transmission systemsImage analysisCombined useLinearity
A biometric method and system for personal authentication using sequences of partial fingerprint signatures provides a high security capability to various processes requiring positive identification of individuals. This approach is further enhanced by employing a frequency domain technique for calculating a Similarity Index of the partial fingerprint signatures. In a baseline usage, the sequential partial fingerprint sequence techniques augments sentinel systems for gaining access to restricted areas, and when used in combination with financial cards, offer a unique and greatly simplified means for authenticating or identifying individuals. A highly automated technique initially obtains four (illustratively) linear partial fingerprint signatures which serve as reference data against which later proffered candidate data in the form of at least two linear partial fingerprint signatures are compared for authentication. The particular two candidate signatures used and the sequence in which they are submitted are selected with the user's consent and serve as a PIN-like unique personal code. In an advanced embodiment, the same two candidate signatures in the chosen sequence are processed in a unique FFT / DFT process to produce a highly reliable Similarity Index to authenticate or verify the identity of individuals. The use of only partial fingerprint data greatly allays the concerns of widespread fingerprint dissemination by many individuals.
Owner:WONG JACOB Y +1

Personal choice biometric signature

A biometric method and system for personal authentication using sequences of partial fingerprint signatures provides a high security capability to various processes requiring positive identification of individuals. This approach is further enhanced by employing a frequency domain technique for calculating a Similarity Index of the partial fingerprint signatures. In a baseline usage, the sequential partial fingerprint sequence techniques augments sentinel systems for gaining access to restricted areas, and when used in combination with financial cards, offer a unique and greatly simplified means for authenticating or identifying individuals. A highly automated technique initially obtains a reference set of linear partial fingerprint signatures which serve as reference data against which later proffered candidate data in the form of at least two linear partial fingerprint signatures are compared for authentication. The particular two candidate signatures used and the sequence in which they are submitted are selected with the user's consent and serve as a PIN-like unique personal code. In an advanced embodiment, a pair of proximity sensors located along each of the linear tracks used for developing the linear partial signatures produce finger sensing signals which compensate for finger movement speeds and hence significantly improves the calculated Similarity Index values. The use of only partial fingerprint data greatly allays the concerns of widespread fingerprint dissemination by many individuals.
Owner:WONG JACOB Y

Data framing for adaptive-block-length coding system

An audio encoder applies an adaptive block-encoding process to segments of audio information to generate frames of encoded information that are aligned with a reference signal conveying the alignment of a sequence of video information frames. The audio information is analyzed to determine various characteristics of the audio signal such as the occurrence and location of a transient, and a control signal is generated that causes the adaptive block-encoding process to encode segments of varying length. A complementary decoder applies an adaptive block-decoding process to recover the segments of audio information from the frames of encoded information. In embodiments that apply time-domain aliasing cancellation (TDAC) transforms, window functions and transforms are applied according to one of a plurality of segment patterns that define window functions and transform parameters for each segment in a sequence of segments. The segments in each frame of a sequence of overlapping frames may be recovered without aliasing artifacts independently from the recovery of segments in other frames. Window functions are adapted to provide preferred frequency-domain responses and time-domain gain profiles.
Owner:DOLBY LAB LICENSING CORP

Fiber optic position and shape sensing device and method relating thereto

The present invention is directed toward a fiber optic position and shape sensing device and the method of use. The device comprises an optical fiber means. The optical fiber means comprises either at least two single core optical fibers or a multicore optical fiber having at least two fiber cores. In either case, the fiber cores are spaced apart such that mode coupling between the fiber cores is minimized. An array of fiber Bragg gratings are disposed within each fiber core and a frequency domain reflectometer is positioned in an operable relationship to the optical fiber means. In use, the device is affixed to an object. Strain on the optical fiber is measured and the strain measurements correlated to local bend measurements. Local bend measurements are integrated to determine position and / or shape of the object.
Owner:INTUITIVE SURGICAL OPERATIONS INC

Fiber Optic Position and Shape Sensing Device and Method Relating Thereto

The present invention is directed toward a fiber optic position and shape sensing device and the method of use. The device comprises an optical fiber means. The optical fiber means comprises either at least two single core optical fibers or a multicore optical fiber having at least two fiber cores. In either case, the fiber cores are spaced apart such that mode coupling between the fiber cores is minimized. An array of fiber Bragg gratings are disposed within each fiber core and a frequency domain reflectometer is positioned in an operable relationship to the optical fiber means. In use, the device is affixed to an object. Strain on the optical fiber is measured and the strain measurements correlated to local bend measurements. Local bend measurements are integrated to determine position and / or shape of the object.
Owner:INTUITIVE SURGICAL OPERATIONS INC

Orthogonal superposition coding for direct-sequence communications

An adaptation to Carrier Interferometry synthesis and analysis provides for complex coding and decoding in a sliding window transform. Coding and decoding functionality can be extended to spatial processing in systems employing multiple transceiver elements. Poly-amplitude codes permit successive interference cancellation in spatial and frequency-domain processing. Handoffs in cellular systems are facilitated by selecting spectral / base station combinations that optimize link performance.
Owner:DEPARTMENT 13 INC

Dynamic distortion elimination for output audio

A method (200) for improving quality of output audio (126). The method can include detecting an output acoustic signal (128) and generating a receive audio signal (134) based, at least in part, on the detected output acoustic signal. A frequency domain representation (140) of the receive audio signal can be compared to a frequency domain representation (138) of a source audio signal (124) from which the output acoustic signal is generated. At least one distortion signal (142) in the receive audio signal can be identified, and the source audio signal can be selectively equalized to reduce an amplitude of the source audio signal at a frequency that correlates to the distortion signal.
Owner:GOOGLE TECHNOLOGY HOLDINGS LLC

Method for coding an audio signal

A method for coding or decoding an audio signal combines the advantages of TNS processing and noise substitution. A time-discrete audio signal is initially transformed to the frequency domain in order to obtain spectral values of the temporal audio signal. Subsequently, a prediction of the spectral values in relation to frequency is carried out in order to obtain spectral residual values. Within the spectral residual values, areas are detected encompassing spectral residual values with noise properties. The spectral residual values in the noise areas are noise-substituted, whereupon information concerning the noise areas and noise substitution is incorporated into side information pertaining to a coded audio signal. Thus, considerable bit savings in case of transient signals can be achieved.
Owner:FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG EV

Separating motion from cardiac signals using second order derivative of the photo-plethysmogram and fast fourier transforms

The present invention is directed toward a pulse oximetry system for the determination of a physiological parameter capable of removing motion artifacts from physiological signals comprises a hardware subsystem and a software subsystem. The software subsystem is used in conjunction with the hardware subsystem to perform a method for removing a plurality of motion artifacts from the photo-plethysmographic data and for obtaining a measure of at least one physiological parameter from the data. The method comprises acquiring the raw photo-plethysmographic data, transforming the data into the frequency domain, analyzing the transformed data to locate a series of candidate cardiac spectral peaks (primary plus harmonics), reconstructing a photo-plethysmographic signal in the time domain with only the candidate cardiac spectral peaks (primary plus harmonics), computing the second order derivative of the reconstructed photo-plethysmographic signal, analyzing the candidate second order derivative photo-plethysmographic signal to determine the absence or presence of cardiac physiologic signal characteristics, and finally selecting the best physiologic candidate from the series of potential cardiac spectral peaks (primary plus harmonics) based upon a second derivative scoring system. This scoring system is preferentially based upon second derivative processing analysis, but can be equally applied using the first, third, fourth or other similar derivative processing analysis.
Owner:SPACELABS HEALTHCARE LLC

Method and device for multi-user channel estimation

The invention computes frequency-domain channel gains by compiling a set of estimated channel gains as a function of pilot sequences, a set of analytical channel gains variables, and a set of weighting coefficients variables. A plurality of weighting coefficients are computed as a function of time and frequency correlation functions, a noise correlation matrix, and pilot sequences. A weighting matrix is computed from the weighting coefficients. After receiving a training sequence from at least one transmitter, a received data matrix is computed from the training sequence. The weighting matrix and the received data matrix are used to compute the frequency-domain channel gains. The invention also provides a method for reducing the computational complexity of estimating the time and frequency response of at least one desired signal received by at least one antenna. Also, the time and frequency response of at least one desired signal received by at least one antenna can be both interpolated and predicted with the present invention.
Owner:MOTOROLA SOLUTIONS INC

Method and apparatus for enhancing noise-corrupted speech

A noise suppression device receives data representative of a noise-corrupted signal which contains a speech signal and a noise signal, divides the received data into data frames, and then passes the data frames through a pre-filter to remove a dc-component and the minimum phase aspect of the noise-corrupted signal. The noise suppression device appends adjacent data frames to eliminate boundary discontinuities, and applies fast Fourier transform to the appended data frames. A voice activity detector of the noise suppression device determines if the noise-corrupted signal contains the speech signal based on components in the time domain and the frequency domain. A smoothed Wiener filter of the noise suppression device filters the data frames in the frequency domain using different sizes of a window based on the existence of the speech signal. Filter coefficients used for Wiener filter are smoothed before filtering. The noise suppression device modifies magnitude of the time domain data based on the voicing information outputted from the voice activity detector.
Owner:META C CORP

Detecting Software Attacks By Monitoring Electric Power Consumption Patterns

Software attacks such as worms and viruses are detected in an electronic device by monitoring power consumption patterns. In a first embodiment, software attacks are detected by an increase in power consumption. The increased power consumption can be caused by increased network traffic, or by increased activity in the microprocessor. Monitoring power consumption is particularly effective for detecting DOS / flooding attacks when the electronic device is in an idle state. In a second embodiment, a power consumption signal is converted to the frequency domain (e.g., by fast Fourier transform). The highest amplitude frequencies are identified. Specific software attacks produce characteristic frequencies in the power consumption signal. Software attacks are therefore detected by matching the highest amplitude frequencies with frequencies associated with specific worms and viruses. Identification of a particular software attack typically requires matching of 3 or more of the highest amplitude frequencies, and, optionally, amplitude information.
Owner:UNITED STATES OF AMERICA THE AS REPRESENTED BY THE SEC OF THE ARMY +1

OFDM signal processing in a base transceiver system

A method and apparatus provides OFDM signal compression for transfer over serial data links in a base transceiver system (BTS) of a wireless communication network. For the uplink, an RF unit of the BTS applies OFDM cyclic prefix removal and OFDM frequency transformation of the baseband signal samples followed by frequency domain compression of the baseband signal samples, resulting from analog to digital conversion of received analog signals followed by digital downconversion, forming compressed coefficients. After transfer over the serial data link, the baseband processor applies frequency domain decompression to the compressed coefficients prior to further signal processing. For the downlink, the RF unit performs frequency domain decompression of the compressed coefficients and applies OFDM inverse frequency transformation of the decompressed coefficients and OFDM cyclic prefix insertion prior to digital upconversion and digital to analog conversion, generating the analog signal for transmission over the antenna.
Owner:INTEGRATED DEVICE TECH INC

Methods and Devices for Low-Frequency Emphasis During Audio Compression Based on Acelp/Tcx

A first aspect of the present invention relates to a method for low-frequency emphasizing the spectrum of a sound signal transformed in a frequency domain and comprising transform coefficients grouped in a number of blocks, in which a maximum energy for one block is calculated and a position index of the block with maximum energy is determined, a factor is calculated for each block having a position index smaller than the position index of the block with maximum energy the calculated maximum energy and the energy of the block, and, for each block, a gain determining from the factor is applied to the transform coefficients of the block. Another aspect of the invention is concerned with an HF coding method for coding, through a bandwidth extension scheme, an HF signal obtained from separation of a full-bandwidth sound signal into the HF signal and a LF signal, in which an estimation of the an HF gain is calculated from LPC coefficients, the energy of the HF signal is calculated, the LF signal is processed to produce a synthesized version of the HF signal, the energy of the synthesized version of the HF signal is calculated, a ratio between the energy of the HF signal and the energy of the synthesized version of the HF signal is calculated and expressing as an HF gain, and a difference between the estimation of the HF gain and the HF gain is calculated to obtain a gain correction. A third aspect of the invention is concerned with a method for producing from a decoded target signal an overlap-add target signal in a current frame coded according to a first coding mode. According to this method, the decoded target signal of the current frame is windowed and a left portion of the window is skipped. A zero-input response of a weighting filter of the previous frame coded according to a second coding mode is calculated and windowed so that the zero-input response has an amplitude monotonically decreasing to zero after a predetermined time period. Finally, the calculated zero-input response is added to the decoded target signal to reconstruct the overlap-add target signal.
Owner:VOICEAGE CORP

Passive physiological monitoring (P2M) system

Passive Physiological monitoring apparatus and method have a sensor for sensing physiological phenomenon. A converter converts sensed data into electrical signals and a computer receives and computes the signals, and outputs computed data for real-time interactive display. The sensor is a piezoelectric film of polyvinylidene fluoride. A band-pass filter filters out noise and isolates the signals to reflect data from the body. A pre-amplifier amplifies signals. Signals detected include mechanical, thermal and acoustic signatures reflecting cardiac output, cardiac function, internal bleeding, respiratory, pulse, apnea, and temperature. A pad may incorporate the PVDF film and may be fluid-filled. The film converts mechanical energy into analog voltage signals. Analog signals are fed through the band-pass filter and the amplifier. A converter converts the analog signals to digital signals. A Fourier transform routine is used to transform into the frequency domain. A microcomputer is used for recording, analyzing and displaying data for on-line assessment and for providing realtime response. A radio-frequency filter may be connected to a cable and the film for transferring signals from the film through the cable. The sensor may be an array provided in a MEDEVAC litter or other device for measuring acoustic and hydraulic signals from the body of a patient for field monitoring, hospital monitoring, transport monitoring, home, remote monitoring.
Owner:HOANA MEDICAL

Small array microphone for beam-forming and noise suppression

Techniques are provided to suppress noise and interference using an array microphone and a combination of time-domain and frequency-domain signal processing. In one design, a noise suppression system includes an array microphone, at least one voice activity detector (VAD), a reference generator, a beam-former, and a multi-channel noise suppressor. The array microphone includes multiple microphones—at least one omni-directional microphone and at least one uni-directional microphone. Each microphone provides a respective received signal. The VAD provides at least one voice detection signal used to control the operation of the reference generator, beam-former, and noise suppressor. The reference generator provides a reference signal based on a first set of received signals and having desired voice signal suppressed. The beam-former provides a beam-formed signal based on a second set of received signals and having noise and interference suppressed. The noise suppressor further suppresses noise and interference in the beam-formed signal.
Owner:FORTEMEDIA

System and method for interference mitigation for wireless communication

InactiveUS20050122999A1Facilitate interference mitigationEnables utilization of spectrumFrequency-division multiplexDiversity/multi-antenna systemsTime domainFrequency spectrum
Disclosed are systems and methods which provide interference mitigation by making alternative resources available within areas served by wireless communication links. Embodiments provide multiple channel availability in establishing wireless communication links to facilitate interference mitigation. Time domain techniques, spatial processing techniques, and / or frequency domain techniques may be implemented for spectrum management. Embodiments provide wireless base station configurations in which all or a plurality of base station sectors use a same frequency channel and / or in which each sector or a plurality of sectors use all frequency channels. Multi-channel strategies may be implemented such as to provide dynamic selection of a “best” frequency channel, to provide transmission of identical data on multiple channels for combining / selection at the receiver, and / or to provide for dividing the data for transmission on multiple channels.
Owner:HEWLETT-PACKARD ENTERPRISE DEV LP

Uplink DMRS transmitting method, device and system/ Transmitting method, device and system used for uplink DMRS

The invention relates to the field of communication, provides an uplink DMRS (Demodulation Reference Signal) transmitting method, device and system and solves the problem that the time-frequency resource overhead of the uplink demodulation reference signal is excessive. The method comprises the steps that a base station configures a resource, a pattern or a parameter set required for transmitting the uplink DMRS for a user terminal; and the base station transmits or indicates the resource, the pattern or the parameter set required for transmitting the uplink DMRS to the user terminal via a bit domain or a high-level signaling of downlink control information. The resource, the pattern or the parameter set comprises a time domain position, a frequency domain position, a subframe configuration or a cycle, and a hopping mode. The technical scheme is applicable to a long term evolution system, and an uplink DMRS transmitting mechanism with the low time-frequency resource overhead is realized.
Owner:ZTE CORP

Super-resolution overlay in multi-projector displays

A technique, associated system and computer executable program code, for projecting a superimposed image onto a target display surface under observation of one or more cameras. A projective relationship between each projector being used and the target display surface is determined using a suitable calibration technique. A component image for each projector is then estimated using the information from the calibration, and represented in the frequency domain. Each component image is estimated by: Using the projective relationship, determine a set of sub-sampled, regionally shifted images, represented in the frequency domain; each component image is then composed of a respective set of the sub-sampled, regionally shifted images. In an optimization step, the difference between a sum of the component images and a frequency domain representation of a target image is minimized to produce a second, or subsequent, component image for each projector. Here, a second set of frequency domain coefficients for use in producing a frequency domain representation of the second component image for each projector is identified. Taking the inverse Fourier transform of the frequency domain representation of the second component image, converts the information into a spatial signal that is placed into the framebuffer of each component projector and projected therefrom to produce the superimposed image.
Owner:UNIV OF KENTUCKY RES FOUND

Methods and devices for low-frequency emphasis during audio compression based on ACELP/TCX

A first aspect of the present invention relates to a method for low-frequency emphasizing the spectrum of a sound signal transformed in a frequency domain and comprising transform coefficients grouped in a number of blocks, in which a maximum energy for one block is calculated and a position index of the block with maximum energy is determined, a factor is calculated for each block having a position index smaller than the position index of the block with maximum energy the calculated maximum energy and the energy of the block, and, for each block, a gain determining from the factor is applied to the transform coefficients of the block. Another aspect of the invention is concerned with an HF coding method for coding, through a bandwidth extension scheme, an HF signal obtained from separation of a full-bandwidth sound signal into the HF signal and a LF signal, in which an estimation of the an HF gain is calculated from LPC coefficients, the energy of the HF signal is calculated, the LF signal is processed to produce a synthesized version of the HF signal, the energy of the synthesized version of the HF signal is calculated, a ratio between the energy of the HF signal and the energy of the synthesized version of the HF signal is calculated and expressing as an HF gain, and a difference between the estimation of the HF gain and the HF gain is calculated to obtain a gain correction. A third aspect of the invention is concerned with a method for producing from a decoded target signal an overlap-add target signal in a current frame coded according to a first coding mode. According to this method, the decoded target signal of the current frame is windowed and a left portion of the window is skipped. A zero-input response of a weighting filter of the previous frame coded according to a second coding mode is calculated and windowed so that the zero-input response has an amplitude monotonically decreasing to zero after a predetermined time period. Finally, the calculated zero-input response is added to the decoded target signal to reconstruct the overlap-add target signal.
Owner:VOICEAGE CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products