Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3104 results about "Acoustic sensor" patented technology

Alertness monitoring system

A system and method for monitoring the alertness of a subject are provided. A Doppler sensor is disposed to sense a parameter pertaining to the subject, the sensor being one of an acoustic sensor and a microwave sensor. Signals from the sensor are processed through an alertness monitoring algorithm for generating processed signals. It is thereafter determined whether an impairment of alertness event pertaining to the subject has occurred based on the processed signals. Feedback is then provided to the subject based on a determination of whether an impairment of alertness event pertaining to the subject has occurred.
Owner:THE JOHN HOPKINS UNIV SCHOOL OF MEDICINE

Acoustic respiratory monitoring systems and methods

An acoustic sensor is provided according to certain aspects for non-invasively detecting physiological acoustic vibrations indicative of one or more physiological parameters of a medical patient. The sensor can include an acoustic sensing element configured to generate a first signal in response to acoustic vibrations from a medical patient. The sensor can also include front-end circuitry configured to receive an input signal that is based at least in part on the first signal and to produce an amplified signal in response to the input signal. In some embodiments, the sensor further includes a compression module in communication with the front-end circuitry and configured to compress portions of at least one of the input signal and the amplified signal according to a first compression scheme, the compressed portions corresponding to portions of the first signal having a magnitude greater than a predetermined threshold level.
Owner:JPMORGAN CHASE BANK NA

Two-part patch sensor for monitoring vital signs

A two-component monitoring device and system for monitoring blood pressure from a patient is disclosed herein. The two-component monitoring device includes a disposable component and a main component. The disposable component features: i) a backing structure having a first aperture; and ii) first and second electrodes, each electrode connected to the backing structure and including an electrical lead and a conductive electrode material, and configured to generate an electrical signal that passes through the electrical lead when the conductive electrode material contacts the patient. The main component includes: i) first and second connectors configured to connect to the first and second electrical leads to receive the first and second electrical signals; and ii) an optical component comprising a light source that generates optical radiation and a photodetector that detects the optical radiation. The optical component inserts into the first aperture of the disposable component. The main component optionally includes an acoustic sensor. The system utilizes a processing device, connected to the monitoring device by a cable which receives and processes a plurality of signals to determine real-time blood-pressure values for the patient.
Owner:SOTERA WIRELESS

Electrode placement for wireless intrabody communication between components of a hearing system

A number of ear-worn hearing system devices are provided that each include a pair of electrodes to transmit time varying electrical signals therebetween when in contact with skin of a user's body. The devices each include a housing, a sound sensor, and processing circuitry included within the housing. The electrodes are coupled to the circuitry and are spaced apart from one another a distance sufficient to provide capacitance between the electrodes below a desired threshold. The electrodes are disposed along the housing for placement on locations of the user's body where skin contact is not likely to be disrupted by nominal body movements.
Owner:THE BOARD OF TRUSTEES OF THE UNIV OF ILLINOIS +1

Active noise tuning system

Active noise control system and method for controlling an acoustic noise generated by a noise source at a listening location, in which system and method sound is picked up in the surroundings of the listening location by a sound sensor; an electrical noise signal which corresponds to the acoustic noise of the noise source is generated and filtered adaptively in accordance with control signals. The adaptively filtered noise signal is irradiated into the surroundings of the listening location by a sound reproduction device, where a secondary path transfer function extends between the sound reproduction device and sound sensor. The noise signal is filtered with a transfer function that models the secondary path transfer function. The signals which provided by the sound sensor after first filtering serve as control signals for the adaptive filtering.
Owner:HARMAN BECKER AUTOMOTIVE SYST

Use of micro-electro-mechanical systems (MEMS) in well treatments

A method of servicing a wellbore, comprising placing a wellbore composition comprising a plurality of Micro-Electro-Mechanical System (MEMS) sensors in the wellbore, placing a plurality of acoustic sensors in the wellbore, obtaining data from the MEMS sensors and data from the acoustic sensors using a plurality of data interrogation units spaced along a length of the wellbore, and transmitting the data obtained from the MEMS sensors and the acoustic sensors from an interior of the wellbore to an exterior of the wellbore. A method of servicing a wellbore, comprising placing a wellbore composition comprising a plurality of Micro-Electro-Mechanical System (MEMS) sensors in the wellbore, and obtaining data from the MEMS sensors using a plurality of data interrogation units spaced along a length of the wellbore, wherein one or more of the data interrogation units is powered by a turbo generator or a thermoelectric generator located in the wellbore.
Owner:HALLIBURTON ENERGY SERVICES INC

Real Time Pump Monitoring

A system and method for monitoring operation of a pump are disclosed herein. The methods and systems make use of acoustic sensors to collect and analyze data in order to detect cavitation. The disclosed methods and systems may also be used to detect valve damage. The pump may be a positive displacement pump that is employed in a wellbore servicing operation such as pumping a wellbore servicing fluid into a wellbore.
Owner:HALLIBURTON ENERGY SERVICES INC

Device for determining respiratory rate and other vital signs

A body-worn sensor that measures respiratory rate and other vital signs using an acoustic sensor (e.g., a small-scale sensor). The body-worn sensor features a chest-worn patch sensor that combines both the acoustic sensor and an ECG electrode into a single adhesive patch. To measure blood pressure, the device additionally performs a ‘composite’ PTT-based measurement that features both pressure-dependent and pressure-free measurements. The acoustic sensor measures respiration rate by recording sounds related to the patient's inspiration and expiration. The acoustic sensor is typically placed near the patient's trachea, but can also be placed on the middle right and left side of the chest, and the middle right and left side of the back.
Owner:SOTERA WIRELESS

System and method of automated gunshot emergency response system

A threat sensing system is provided including, in some aspects, a plurality of threat sensing devices distributed throughout a school or facility, with each of the threat sensing devices comprising one or more acoustic sensors, one or more gas sensors, and a communication circuit or communication device configured to output sensor data to a system gateway. The system gateway is configured to receive and process the sensor data output from the threat sensing devices and determine whether the processed sensor data corresponds to one of a predetermined plurality of known threats (e.g., a gunshot) and, if so, to communicate the existence of the threat, the processed sensor information, and / or predetermined messaging information to one or more recipient devices (e.g., first responders, dispatchers).
Owner:ONALERT GUARDIAN SYST INC

Method and system of identifying a user of a handheld device

A system and method for identifying a user of a handheld device is herein disclosed. The device implementing the method and system may attempt to identify a user based on signals that are incidental to a user's handling of the device. The signals are generated by a variety of sensors dispersed along the periphery or within the housing. The sensors range may include touch sensors, inertial sensors, acoustic sensors, pulse oximiters, and a touchpad. Based on the sensors and corresponding signals, identification information is generated. The identification information is used to identify the user of the handheld device. The handheld device may implement various statistical learning and data mining techniques to increase the robustness of the system. The device may also authenticate the user based on the user drawing a circle, or other shape.
Owner:PANASONIC CORP

Self calibrating multi-element dipole microphone

A self calibrating dipole microphone formed from two omni-directional acoustic sensors. The microphone includes a sound source acoustically coupled to the acoustic sensors and a processor. The sound source is excited with a test signal, exposing the acoustic sensors to acoustic calibration signals. The responses of the acoustic sensors to the calibration signals are compared by the processor, and one or more correction factors determined. Digital filter coefficients are calculated based on the one or more correction factors, and applied to the output signals of the acoustic sensors to compensate for differences in the sensitivities of the acoustic sensors. The filtered signals provide acoustic sensor outputs having matching responses, which are subtractively combined to form the dipole microphone output.
Owner:VOCOLLECT

MEMS microphone with a stacked PCB package and method of producing the same

A MEMS microphone with a stacked PCB package is described. The MEMS package has at least one MEMS acoustic sensor device located on a PCB stack. A metal cap structure surrounds the at least one MEMS acoustic sensor device wherein an edge surface of the metal cap structure is attached and electrically connected to the PCB stack. In a first embodiment, a back chamber is formed underlying the at least one MEMS acoustic sensor device and within the PCB stack wherein an opening underlying the at least one MEMS acoustic sensor device accesses the back chamber. An opening in the metal cap structure not aligned with the at least one MEMS acoustic sensor device allows external fluid, acoustic energy or pressure to enter the at least one MEMS acoustic sensor device. In a second embodiment, a back chamber is formed in the space under the metal cap and over the first PCB. A hollow chamber is formed between the first PCB and the second PCB wherein an opening under the at least one MEMS acoustic sensor device accesses the hollow chamber. An opening in a bottom surface of the PCB stack not aligned with the at least one MEMS acoustic sensor device also accesses the hollow chamber and allows external fluid, acoustic energy or pressure to enter the at least one MEMS acoustic sensor device.
Owner:SHANDONG GETTOP ACOUSTIC

Binaural signal processing using multiple acoustic sensors and digital filtering

A desired acoustic signal is extracted from a noisy environment by generating a signal representative of the desired signal with processor (30). Processor (30) receives aural signals from two sensors (22, 24) each at a different location. The two inputs to processor (30) are converted from analog to digital format and then submitted to a discrete Fourier transform process to generate discrete spectral signal representations. The spectral signals are delayed to provide a number of intermediate signals, each corresponding to a different spatial location relative to the two sensors. Locations of the noise source and the desired source, and the spectral content of the desired signal are determined from the intermediate signal corresponding to the noise source locations. Inverse transformation of the selected intermediate signal followed by digital to analog conversion provides an output signal representative of the desired signal with output device (90). Techniques to localize multiple acoustic sources are also disclosed. Further, a technique to enhance noise reduction from multiple sources based on two-sensor reception is described.
Owner:THE BOARD OF TRUSTEES OF THE UNIV OF ILLINOIS

Enhanced acoustic detection of gas leaks in underground gas pipelines

A method for locating gas leaks from underground gas pipelines in which a first acoustic sensor having a first signal output is positioned in ground disposed substantially above or at a distance from the underground gas pipeline. At least one second acoustic sensor having a second signal output is positioned in the ground at a plurality of locations substantially above the underground gas pipeline. The output signals from the acoustic sensors are measured for each location of the second acoustic sensor and the signals are adaptively filtered to remove common noise signal components. The statistical minima of these rms voltages are determined for both the first output signal and the adaptively filtered second output signals and the differences determined. The location of the second acoustic sensor corresponding to the largest positive said difference is the location closest to the leak site.
Owner:GAS TECH INST

MEMS microphone with a stacked PCB package and method of producing the same

A MEMS microphone with a stacked PCB package is described. The MEMS package has at least one MEMS acoustic sensor device located on a PCB stack. A metal cap structure surrounds the at least one MEMS acoustic sensor device wherein an edge surface of the metal cap structure is attached and electrically connected to the PCB stack. In a first embodiment, a back chamber is formed underlying the at least one MEMS acoustic sensor device and within the PCB stack wherein an opening underlying the at least one MEMS acoustic sensor device accesses the back chamber. An opening in the metal cap structure not aligned with the at least one MEMS acoustic sensor device allows external fluid, acoustic energy or pressure to enter the at least one MEMS acoustic sensor device. In a second embodiment, a back chamber is formed in the space under the metal cap and over the first PCB. A hollow chamber is formed between the first PCB and the second PCB wherein an opening under the at least one MEMS acoustic sensor device accesses the hollow chamber. An opening in a bottom surface of the PCB stack not aligned with the at least one MEMS acoustic sensor device also accesses the hollow chamber and allows external fluid, acoustic energy or pressure to enter the at least one MEMS acoustic sensor device.
Owner:SHANDONG GETTOP ACOUSTIC

Blood pressure monitor

InactiveUS20080082004A1Rapid and comfortable measurement of blood pressureLow costElectrocardiographyDiagnostics using lightMedicineBlood pressure monitors
The invention provides a method for measuring a blood pressure value of a user featuring the following steps: 1) generating optical, electrical, and acoustic waveforms with, respectively, optical, electrical, and acoustic sensors attached to a single substrate that contacts a user; 2) determining at least one parameter by analyzing the optical and acoustic waveforms; and 3) processing the parameter to determine the blood pressure value for the user.
Owner:TRIAGE WIRELESS

Acoustic sensor for downhole measurement tool

An acoustic sensor for use in a downhole measurement tool is provided. The acoustic sensor includes a piezo-composite transducer element. In various exemplary embodiments, the acoustic sensor further includes a composite backing layer, at least one matching layer, and a barrier layer deployed at an outermost surface of the sensor. Exemplary embodiments of this invention may advantageously withstand the extreme temperatures, pressures, and mechanical shocks frequent in downhole environments and thus may exhibit improved reliability. Exemplary embodiment of this invention may further provide improved signal to noise characteristics. Methods for fabricating acoustic sensors and downhole measurement tools are also provided.
Owner:SCHLUMBERGER TECH CORP

Multiple-triggering alarm system by transmitters and portable receiver-buzzer

The invention concerns transmitters and a portable receiver-buzzer with programmable triggering, hand-, voice- / sound- and pulse-operated, for remotely warning one or several persons. The inventive device consists of a receiver-buzzer case (16), a presence-detecting (23), telephone jack (30), entrance door (36), central transmitter housing (13) transmitting a coded signal to the reciever (20) triggering the motor-buzzer (21) and light-emitting diode (19). In the central transmitter housing (13) there are a clock (1), a voice / sound sensor (4), an alarm push-button (2), a presence detector push-button (14), a LED sector (8), two battery-controlled LED's (6 and 7), a switch button (5) for clock (1) and voice / sound sensor (4), an acknowledgement button (9), an alarm LED (2), a housing (11) for charging the receiver (20) battery, a potentiometer (10). The inventive device consists of a receiver-buzzer (16) wherein are a battery (22), a watch (18), three LED's (17), a receiver (20) receiving the coded signals from the transmitter triggering the buzzer (21). The device, by virtue of its functions, is designed for remotely warning in case of need, emergency or danger, any person equipped with a portable receiver-buzzer.
Owner:BELLONE RAYMOND +1

Portable equipment for measuring and/or monitoring the heart rate

Portable equipment including in combination a heart rate measuring device and a sound reproduction unit including means for supplying a signal representative of the sound reproduction and for supplying sound information to a sound transducer, wherein said measuring device and said sound transducer are mounted at least in part in an assembly adapted to be fixed to an ear of a wearer of the equipment and, wherein said sound reproduction unit includes means for optionally substituting for and / or superimposing on said signal representative of said sound reproduction a signal generated from signals from said measuring device and representative of said heart rate. The equipment can take the form of a walkman, for example, or a hearing aid for the hard of hearing.
Owner:CSEM CENT SUISSE DELECTRONIQUE & DE MICROTECHNIQUE SA RECH & DEV

Acoustic wide area air surveillance system

A method and apparatus for detecting an aircraft. The method is provided for wide area tracking of aircraft. An acoustic emission of the aircraft is detected from a plurality of locations. A position of the aircraft at a set of times is estimated by comparing a set of harmonically related Doppler shifted frequencies for the acoustic emission to an expected zero Doppler shifted frequency of the aircraft to form an estimated position. The position of the aircraft and a heading of the aircraft are tracked using the estimated position. The aircraft type is classified based on the corresponding set of zero Doppler frequencies at each acoustic sensor.
Owner:THE BOEING CO

Continuously adaptive dynamic signal separation and recovery system

A method and apparatus for dynamically separating and recovering original signal sources by processing a set of mixed received mixtures and convolution of said signals utilizing differential equations and a computer. The system of the invention enables the blind separation and recovery of an unknown number of signals mixed together in dynamically changing interference environments with very minimal assumption on the original signals. The system of this invention has practical applications to nonmultiplexed media sharing, adaptive interferer rejection, acoustic sensors, acoustic diagnostics, medical diagnostics and instrumentation, speech, voice, language recognition and processing, wired and wireless modulated communication signal receivers, and cellular communications.
Owner:INNOVATIVE COMPUTING TECH

Enhanced identification applicance for verifying and authenticating the bearer through biometric data

An enhanced identification appliance, such as a wristband, bracelet, patch, headband, neckband, ankleband, legband, card, sticker, or other wearable appliance, may have a biometric sensor, chemical sensor, optical sensor, heat sensor, pressure sensor, humidity sensor, electromagnetic sensor, acoustic sensor, various opto-electronics and / or various security features such as tamper-evident and tamper-resistant features. The sensors may obtain information about the wearer such as a fingerprint, retina, iris, blood, DNA, genetic data, voice pattern, temperature and other characteristic. Security features include a fastener on the identification appliance, which indicates whether the appliance has been attached to a wearer and if so, enables circuit functions. If one tampers with the appliance, circuit functions may be disabled, certain data erased, and / or evidence of tampering made apparent. The appliance may monitor the location or determine the identity of passengers for an airplane, train, boat, bus, or other vehicle. Alternatively, the identification band may contain a person's immigration status.
Owner:MIND FUSION LLC

System for multiplexing acoustic emission (AE) instrumentation

An acoustic monitoring device has at least two acoustic sensors with a triggering mechanism and a multiplexing circuit. After the occurrence of a triggering event at a sensor, the multiplexing circuit allows a recording component to record acoustic emissions at adjacent sensors. The acoustic monitoring device is attached to a solid medium to detect the occurrence of damage.
Owner:DIGITAL WAVE CORP +1

Method and apparatus for determining the proximity of a TMS coil to a subject's head

A proximity sensor for a transcranial magnetic stimulation (TMS) system detects the proximity of a TMS coil assembly to a position at which the coil is to receive pulses during TMS treatment and provides feedback to the operator so that the operator may adjust the TMS coil assembly as necessary to maintain optimal positioning during treatment. A flexible substrate containing a sensor or sensor array is disposed between the TMS coil assembly and the position such that the coupling of the TMS coil assembly to the position may be detected by the sensor(s). Sensor outputs are processed by signal processing circuitry to provide an indication of whether the TMS coil assembly is properly disposed with respect to the position during TMS treatment. A display may be used to provide an indication of how to adjust the TMS coil assembly to improve the positioning of the TMS coil assembly. On the other hand, a sound generator may be used to generate a sound that indicates to an operator whether the TMS coil assembly is properly positioned at the position. Many different types of sensor devices may be used to detect proximity, including membrane switches, variable resistance sensors, resistive strips, touch screens, pickup loops, fluid displacement sensors, optical sensors, acoustic sensors, inductive coupling sensors, capacitive coupling sensors, temperature sensors, and the like.
Owner:NEURONETICS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products