Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

945 results about "Respiratory rate" patented technology

The respiratory rate is the rate at which breathing occurs. This is usually measured in breaths per minute and is set, and controlled by the respiratory centre.

Non-invasive monitoring of respiratory rate, heart rate and apnea

A method and apparatus for estimating a respiratory rate of a patient. The method comprises the steps of recording respiratory sounds of the patient, deriving a plurality of respiratory rates from the recorded sounds using a plurality of respiratory rate estimating methods and applying a heuristic to the plurality of derived respiratory rates, the heuristic selecting one of the derived respiratory rates. The selected respiratory rate is the estimated respiratory rate. The apparatus comprises at least one sensor recording respiratory sounds of the patient, a plurality of respiratory rate processors, each of the processors comprising a respiratory rate calculating method, a heuristic means for selecting one of the calculated respiratory rates and a display means for displaying the selected respiratory as the estimated respiratory rate.
Owner:JPMORGAN CHASE BANK NA

Alarm system that processes both motion and vital signs using specific heuristic rules and thresholds

The invention provides a body-worn monitor that measures a patient's vital signs (e.g. blood pressure, SpO2, heart rate, respiratory rate, and temperature) while simultaneously characterizing their activity state (e.g. resting, walking, convulsing, falling). The body-worn monitor processes this information to minimize corruption of the vital signs by motion-related artifacts. A software framework generates alarms / alerts based on threshold values that are either preset or determined in real time. The framework additionally includes a series of ‘heuristic’ rules that take the patient's activity state and motion into account, and process the vital signs accordingly. These rules, for example, indicate that a walking patient is likely breathing and has a regular heart rate, even if their motion-corrupted vital signs suggest otherwise.
Owner:SOTERA WIRELESS

Method for generating alarms/alerts based on a patient's posture and vital signs

The invention provides a body-worn monitor that measures a patient's vital signs (e.g. blood pressure, SpO2, heart rate, respiratory rate, and temperature) while simultaneously characterizing their activity state (e.g. resting, walking, convulsing, falling). The body-worn monitor processes this information to minimize corruption of the vital signs by motion-related artifacts. A software framework generates alarms / alerts based on threshold values that are either preset or determined in real time. The framework additionally includes a series of ‘heuristic’ rules that take the patient's activity state and motion into account, and process the vital signs accordingly. These rules, for example, indicate that a walking patient is likely breathing and has a regular heart rate, even if their motion-corrupted vital signs suggest otherwise.
Owner:SOTERA WIRELESS

Body-worn vital sign monitor

The invention provides a body-worn vital sign monitor that measures a patient's vital signs (e.g. blood pressure, SpO2, heart rate, respiratory rate, and temperature) while simultaneously characterizing their activity state (e.g. resting, walking, convulsing, falling) and posture (upright, supine). The monitor processes this information to minimize corruption of the vital signs and associated alarms / alerts by motion-related artifacts. It also features a graphical user interface (GUI) rendered on a touchpanel display that facilitates a number of features to simplify and improve patient monitoring and safety in both the hospital and home.
Owner:SOTERA WIRELESS

Wireless physiological sensor system and method

Embodiments of the present invention relate generally to wireless medical monitoring. In particular, some preferred embodiments of the present invention provide a wearable compact body sensor capable of wireless data transmission to a mobile internet platform. The body sensor includes a plurality of sensors including, for example, a temperature sensor, a heart rate sensor, a respiratory rate sensor, an impedance sensor, an electrocardiogram (ECG) sensor, and a ballistocardiogram (BCG) sensor. The physiological data collected by the body sensor can be sent to or accessed by a physician or health care provider.
Owner:WIRELESS MEDICAL MONITORING

Non-invasive body composition monitor, system and method

The invented non-invasive vital signs monitor is in a flexible, nominally flat planar form having integral gel electrodes, a sticky-back rear surface, an internal flex circuit capable of sensing, recording and playing out several minutes of the most recently acquired ECG waveform data and a front surface that includes an outplay port. The invented non-invasive body composition ‘risk’ monitor includes a measurement device for monitoring one or more variables including body fluid mass, dehydration, respiratory rate, blood pressure, bio-impedance, cardiography such as cardiac output, and body conformation parameters. The risk monitor may be provided in a lightweight carrying case into which the vital signs monitor plugs. Thus the two monitors may be independent or they may be integrated into one portable, non-invasive device that can convey important patient data to / from a remote patient medical data center via wireless telemetry for oversight, treatment and possible intervention by a physician.
Owner:RIGHT CORP

Vital sign monitoring system featuring 3 accelerometers

The invention provides a system and method for measuring vital signs (e.g. SYS, DIA, SpO2, heart rate, and respiratory rate) and motion (e.g. activity level, posture, degree of motion, and arm height) from a patient. The system features: (i) first and second sensors configured to independently generate time-dependent waveforms indicative of one or more contractile properties of the patient's heart; and (ii) at least three motion-detecting sensors positioned on the forearm, upper arm, and a body location other than the forearm or upper arm of the patient. Each motion-detecting sensor generates at least one time-dependent motion waveform indicative of motion of the location on the patient's body to which it is affixed. A processing component, typically worn on the patient's body and featuring a microprocessor, receives the time-dependent waveforms generated by the different sensors and processes them to determine: (i) a pulse transit time calculated using a time difference between features in two separate time-dependent waveforms, (ii) a blood pressure value calculated from the time difference, and (iii) a motion parameter calculated from at least one motion waveform.
Owner:SOTERA WIRELESS

Non-contact physiologic motion sensors and methods for use

A radar-based physiological motion sensor is disclosed. Doppler-shifted signals can be extracted from the signals received by the sensor. The Doppler-shifted signals can be digitized and processed subsequently to extract information related to the cardiopulmonary motion in one or more subjects. The information can include respiratory rates, heart rates, waveforms due to respiratory and cardiac activity, direction of arrival, abnormal or paradoxical breathing, etc. In various embodiments, the extracted information can be displayed on a display.
Owner:RESMED SENSOR TECH

Body composition, circulation, and vital signs monitor and method

The invented non-invasive vital signs monitor is in a flexible, nominally flat planar form having integral gel electrodes, a sticky-back rear surface, an internal flex circuit capable of sensing, recording and playing out several minutes of the most recently acquired ECG waveform data and a front surface that includes an outplay port. The invented non-invasive body composition ‘risk’ monitor includes a measurement device for monitoring one or more variables including body fluid mass, dehydration, respiratory rate, blood pressure, bio-impedance, cardiography such as cardiac output, and body conformation parameters. The risk monitor may be provided in a lightweight carrying case into which the vital signs monitor plugs. Finally, a lightweight portable probe or transducer containing a transmissive or reflective electro-optical emitter and receptor in the infrared spectrum is fitted on a subject's finger or toe. Associated electronics energize and monitor the probe, detect cardio-rhythmic fluctuations therefrom, and process digital data over a prescribed window to produce a non-invasive, qualitative or quantitative measure of the subject's circulation. In accordance with one embodiment of the invention, a simple tri-color LED array is used to indicate the subject's circulation as being normal, reduced, or borderline. Thus the vital signs, bio-impedance, and circulation monitors may be independent or they may be integrated into one portable, non-invasive device that can concurrently monitor and locally display or remotely convey important patient data including circulation data to a local subject or physician or to / from a remote patient medical data center via wireless telemetry for oversight, treatment and possible intervention by a remote physician.
Owner:SEMLER SCI

Method and apparatus for controlling a ventilator

Method and apparatus for controlling a ventilator are described. The invention can be used to control mechanical ventilators as well as respiratory assist devices such as CPAP machines. The apparatus receives input data indicative of patient's oxygen level. A controller determines PEEP, or CPAP, and FIO2, on the basis of data indicative of the patient's oxygen level. In an alternative embodiment, the apparatus further receives input data indicative of patient's carbon dioxide levels, respiratory elastance and airway resistance, and barometric pressure. The controller further utilizes the said input data to determine the optimal values of tidal volume and breathing frequency for a next breath of the patient, and uses the respiratory elastance and airway resistance data to determine any necessary adjustments in the I:E ratio. The controller also applies safety rules, detects and corrects artifacts, and generates warning signals when needed.
Owner:TEHRANI FLEUR T

Method for measuring patient motion, activity level, and posture along with ptt-based blood pressure

The invention provides a system and method for measuring vital signs (e.g. SYS, DIA, SpO2, heart rate, and respiratory rate) and motion (e.g. activity level, posture, degree of motion, and arm height) from a patient. The system features: (i) first and second sensors configured to independently generate time-dependent waveforms indicative of one or more contractile properties of the patient's heart; and (ii) at least three motion-detecting sensors positioned on the forearm, upper arm, and a body location other than the forearm or upper arm of the patient. Each motion-detecting sensor generates at least one time-dependent motion waveform indicative of motion of the location on the patient's body to which it is affixed. A processing component, typically worn on the patient's body and featuring a microprocessor, receives the time-dependent waveforms generated by the different sensors and processes them to determine: (i) a pulse transit time calculated using a time difference between features in two separate time-dependent waveforms, (ii) a blood pressure value calculated from the time difference, and (iii) a motion parameter calculated from at least one motion waveform.
Owner:SOTERA WIRELESS

Non-Invasive Monitoring of Respiratory Rate, Heart Rate and Apnea

A method and apparatus for estimating a respiratory rate of a patient. The method comprises the steps of recording respiratory sounds of the patient, deriving a plurality of respiratory rates from the recorded sounds using a plurality of respiratory rate estimating methods and applying a heuristic to the plurality of derived respiratory rates, the heuristic selecting one of the derived respiratory rates. The selected respiratory rate is the estimated respiratory rate. The apparatus comprises at least one sensor recording respiratory sounds of the patient, a plurality of respiratory rate processors, each of the processors comprising a respiratory rate calculating method, a heuristic means for selecting one of the calculated respiratory rates and a display means for displaying the selected respiratory as the estimated respiratory rate.
Owner:JPMORGAN CHASE BANK NA

Method and system for cardiovascular system diagnosis

InactiveUS20070021673A1Monitoring function and/or diagnosing dysfunction of the cardiovascular systemCatheterDiagnostic recording/measuringControlled breathingPulse wave
The present invention is directed to a method and system for monitoring function and / or diagnosing dysfunction of the cardiovascular system of a human subject. The method comprise measuring pulse wave signals of the subject during rapid excitation of the cardiovascular system, analyzing the measured signals and computing indicators reflecting a response to said excitation. The cardiovascular excitation preferably comprise a controlled breathing protocol characterized by a predefined frequency of breaths (e.g., about 0.1 Hz).
Owner:SPIROCOR LTD

Noninvasive measurement of chemical substances

Utilization of a contact device placed on the eye in order to detect physical and chemical parameters of the body as well as the non-invasive delivery of compounds according to these physical and chemical parameters, with signals being transmitted continuously as electromagnetic waves, radio waves, infrared and the like. One of the parameters to be detected includes non-invasive blood analysis utilizing chemical changes and chemical products that are found in the conjunctiva and in the tear film. A transensor mounted in the contact device laying on the cornea or the surface of the eye is capable of evaluating and measuring physical and chemical parameters in the eye including non-invasive blood analysis. The system utilizes eye lid motion and / or closure of the eye lid to activate a microminiature radio frequency sensitive transensor mounted in the contact device. The signal can be communicated by wires or radio telemetered to an externally placed receiver. The signal can then be processed, analyzed and stored. Several parameters can be detected including a complete non-invasive analysis of blood components, measurement of systemic and ocular blood flow, measurement of heart rate and respiratory rate, tracking operations, detection of ovulation, detection of radiation and drug effects, diagnosis of ocular and systemic disorders and the like.
Owner:GEELUX HLDG LTD

Body-worn vital sign monitor

The invention provides a body-worn vital sign monitor that measures a patient's vital signs (e.g. blood pressure, SpO2, heart rate, respiratory rate, and temperature) while simultaneously characterizing their activity state (e.g. resting, walking, convulsing, falling) and posture (upright, supine). The monitor processes this information to minimize corruption of the vital signs and associated alarms / alerts by motion-related artifacts. It also features a graphical user interface (GUI) rendered on a touchpanel display that facilitates a number of features to simplify and improve patient monitoring and safety in both the hospital and home.
Owner:SOTERA WIRELESS

Device for determining respiratory rate and other vital signs

A body-worn sensor that measures respiratory rate and other vital signs using an acoustic sensor (e.g., a small-scale sensor). The body-worn sensor features a chest-worn patch sensor that combines both the acoustic sensor and an ECG electrode into a single adhesive patch. To measure blood pressure, the device additionally performs a ‘composite’ PTT-based measurement that features both pressure-dependent and pressure-free measurements. The acoustic sensor measures respiration rate by recording sounds related to the patient's inspiration and expiration. The acoustic sensor is typically placed near the patient's trachea, but can also be placed on the middle right and left side of the chest, and the middle right and left side of the back.
Owner:SOTERA WIRELESS

Devices and methods for passive patient monitoring

Devices, systems and methods provide passive patient monitoring of such parameters as body motion, body position, respiratory rate and / or heart rate. Passive monitoring generally involves a sensor device having at least two piezoelectric sensors, provided on a surface, such as a bed, chair, operating table or the like, so that a patient may be coupled with the device by simply allowing the patient to lie, sit, lean, stand on or wear the surface. In one embodiment, multiple patients in a general care area of a hospital may be continuously monitored via multiple passive monitoring devices. If a patient fails to meet one or more predefined threshold criteria or has a negative physiological trend, the system may activate an alarm.
Owner:HOANA MEDICAL

Body-worn vital sign monitor

The invention provides a body-worn vital sign monitor that measures a patient's vital signs (e.g. blood pressure, SpO2, heart rate, respiratory rate, and temperature) while simultaneously characterizing their activity state (e.g. resting, walking, convulsing, falling) and posture (upright, supine). The monitor processes this information to minimize corruption of the vital signs and associated alarms / alerts by motion-related artifacts. It also features a graphical user interface (GUI) rendered on a touchpanel display that facilitates a number of features to simplify and improve patient monitoring and safety in both the hospital and home.
Owner:SOTERA WIRELESS

Method for measuring patient posture and vital signs

The invention provides a system and method for measuring vital signs (e.g. SYS, DIA, SpO2, heart rate, and respiratory rate) and motion (e.g. activity level, posture, degree of motion, and arm height) from a patient. The system features: (i) first and second sensors configured to independently generate time-dependent waveforms indicative of one or more contractile properties of the patient's heart; and (ii) at least three motion-detecting sensors positioned on the forearm, upper arm, and a body location other than the forearm or upper arm of the patient. Each motion-detecting sensor generates at least one time-dependent motion waveform indicative of motion of the location on the patient's body to which it is affixed. A processing component, typically worn on the patient's body and featuring a microprocessor, receives the time-dependent waveforms generated by the different sensors and processes them to determine: (i) a pulse transit time calculated using a time difference between features in two separate time-dependent waveforms, (ii) a blood pressure value calculated from the time difference, and (iii) a motion parameter calculated from at least one motion waveform.
Owner:SOTERA WIRELESS

Body-worn monitor for measuring respiration rate

The invention provides a multi-sensor system that uses an algorithm based on adaptive filtering to monitor a patient's respiratory rate. The system features a first sensor selected from the following group: i) an impedance pneumography sensor featuring at least two electrodes and a processing circuit configured to measure an impedance pneumography signal; ii) an ECG sensor featuring at least two electrodes and an ECG processing circuit configured to measure an ECG signal; and iii) a PPG sensor featuring a light source, photodetector, and PPG processing circuit configured to measure a PPG signal. Each of these sensors measures a time-dependent signal which is sensitive to respiratory rate and, during operation, is processed to determine an initial respiratory rate value. An adaptive digital filter is determined from the initial respiratory rate. The system features a second sensor (e.g. a digital 3-axis accelerometer) that attaches to the patient's torso and measures an ACC signal indicating movement of the chest or abdomen that is also sensitive to respiratory rate. This second signal is processed with the adaptive filter to determine a final value for respiratory rate.
Owner:SOTERA WIRELESS

Contact lens for collecting tears and detecting analytes for determining health status, ovulation detection, and diabetes screening

Utilization of a contact device placed on the eye in order to detect physical and chemical parameters of the body as well as the non-invasive delivery of compounds according to these physical and chemical parameters, with signals being transmitted continuously as electromagnetic waves, radio waves, infrared and the like. One of the parameters to be detected includes non-invasive blood analysis utilizing chemical changes and chemical products that are found in the conjunctiva and in the tear film. A transensor mounted in the contact device laying on the cornea or the surface of the eye is capable of evaluating and measuring physical and chemical parameters in the eye including non-invasive blood analysis. The system utilizes eye lid motion and / or closure of the eye lid to activate a microminiature radio frequency sensitive transensor mounted in the contact device. The signal can be communicated by wires or radio telemetered to an externally placed receiver. The signal can then be processed, analyzed and stored. Several parameters can be detected including a complete non-invasive analysis of blood components, measurement of systemic and ocular blood flow, measurement of heart rate and respiratory rate, tracking operations, detection of ovulation, detection of radiation and drug effects, diagnosis of ocular and systemic disorders and the like.
Owner:GEELUX HLDG LTD

Body-worn monitor for measuring respiration rate

The invention provides a multi-sensor system that uses an algorithm based on adaptive filtering to monitor a patient's respiratory rate. The system features a first sensor selected from the following group: i) an impedance pneumography sensor featuring at least two electrodes and a processing circuit configured to measure an impedance pneumography signal; ii) an ECG sensor featuring at least two electrodes and an ECG processing circuit configured to measure an ECG signal; and iii) a PPG sensor featuring a light source, photodetector, and PPG processing circuit configured to measure a PPG signal. Each of these sensors measures a time-dependent signal which is sensitive to respiratory rate and, during operation, is processed to determine an initial respiratory rate value. An adaptive digital filter is determined from the initial respiratory rate. The system features a second sensor (e.g. a digital 3-axis accelerometer) that attaches to the patient's torso and measures an ACC signal indicating movement of the chest or abdomen that is also sensitive to respiratory rate. This second signal is processed with the adaptive filter to determine a final value for respiratory rate.
Owner:SOTERA WIRELESS

Body-worn system for continuously monitoring a patient's bp, hr, spo2, rr, temperature, and motion; also describes specific monitors for apnea, asy, vtac, vfib, and 'bed sore' index

The invention provides a body-worn monitor that measures a patient's vital signs (e.g. blood pressure, SpO2, heart rate, respiratory rate, and temperature) while simultaneously characterizing their activity state (e.g. resting, walking, convulsing, falling). The body-worn monitor processes this information to minimize corruption of the vital signs by motion-related artifacts. A software framework generates alarms / alerts based on threshold values that are either preset or determined in real time. The framework additionally includes a series of ‘heuristic’ rules that take the patient's activity state and motion into account, and process the vital signs accordingly. These rules, for example, indicate that a walking patient is likely breathing and has a regular heart rate, even if their motion-corrupted vital signs suggest otherwise.
Owner:SOTERA WIRELESS

Method for detecting heart beat and determining heart and respiration rate

Disclosed is an apparatus and system for non-invasively detecting and determining the heart rate and respiration rate of a patient, while the patient is within their sleep environment, suitable for both home and hospital monitoring, which includes an array of at least two pressure-sensitive sensors, positioned under the mattress, which gathers data from the patient corresponding to the vertical and horizontal movements of the body, and wherein the data from each sensor is collected, filtered, and analyzed and finally, the difference between the results gathered from each sensor detects and determines heart and respiration rates.
Owner:YESHA ITSHAK BEN

System and methods for vital sign estimation from passive thermal video

A system for measuring a pulse and respiratory rate from passive thermal video includes contour segmentation and tracking, clustering of informative pixels of interests, and robust dominant frequency component estimation. Contour segmentation is used to locate a blood vessel region to measure, after which all pixels in the nearby region are aligned across frames based on the segmentation's position, and scale in each frame. Spatial filtering is then performed to remove noise not related to heart beat and then non-linear filtering is performed on the temporal signal corresponding to each aligned pixel. The signal spectrum of each pixel is then feed to a clustering algorithm for outlier removal. Pixels in the largest cluster are then used to vote for the dominant frequency, and the median of the dominant frequency is output as the pulse rate.
Owner:FUJIFILM BUSINESS INNOVATION CORP

Body-worn monitor for measuring respiratory rate

The invention provides a system for measuring respiratory rate (RR) from a patient. The system includes an impedance pneumography (IP) sensor, connected to at least two electrodes, and a processing system that receives and processes signals from the electrodes to measure an IP signal. A motion sensor (e.g. an accelerometer) measures at least one motion signal (e.g. an ACC waveform) describing movement of a portion of the patient's body to which it is attached. The processing system receives the IP and motion signals, and processes them to determine, respectfully, frequency-domain IP and motion spectra. Both spectra are then collectively processed to remove motion components from the IP spectrum and determine RR. For example, during the processing, an algorithm determines motion frequency components from the frequency-domain motion spectrum, and then using a digital filter removes these, or parameters calculated therefrom, from the IP spectrum.
Owner:SOTERA WIRELESS

Systems and methods for controlling breathing rate

A method and corresponding system for providing breathing cues includes monitoring respiration of a user and determining a user breathing frequency including an inspiration portion and an expiration portion of the breathing, supplying a high positive air pressure to the user during the inspiration portion and a low positive air pressure during the expiration portion in substantial synchronicity with the user's respiration, comparing the user breathing frequency with a target breathing frequency, and when the user breathing frequency is greater than the target breathing frequency, increasing, in a predetermined manner, a time over which the high positive air pressure is supplied to the user, and adjusting a time over which the low positive pressure air pressure is supplied to the user.
Owner:PHILIPS RS NORTH AMERICA LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products