Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2404 results about "Vital signs" patented technology

Vital signs (also known as vitals) are a group of the four to six most important signs that indicate the status of the body’s vital (life-sustaining) functions. These measurements are taken to help assess the general physical health of a person, give clues to possible diseases, and show progress toward recovery. The normal ranges for a person’s vital signs vary with age, weight, gender, and overall health.

Portable remote patient telemonitoring system

A system and method for monitoring vital signs and capturing data from a patient remotely using radiotelemetry techniques. The system is characterized by a cordless, disposable sensor band with sensors form measuring full waveform ECG, full waveform respiration, skin temperature, and motion, and transmission circuitry for the detection and transmission of vital signs data of the patient. A small signal transfer unit that can either be worn by the patient, e.g., on his or her belt, or positioned nearby receives data from the sensor band, which it then forwards by e.g., radio transmission to a base station that can be located up to 60 meters away. The base station receives data transmissions from the signal transfer unit and is designed to connect to conventional phone lines for transferring the collected data to a remote monitoring station. The base station may also capture additional clinical data, such as blood pressure data, and to perform data checks. Patient safety is enhanced by the ability of the base station to compare clinical data, e.g., ECG, against given profiles and to mark events when appropriate or when the base station is programmed to do so. Such events are indicated to the physician and could be indicated to the patient by reverse transmission to the signal transfer unit. A remote monitoring station allows the presentation and review of data (including events) forwarded by the sensor band. ECG analysis software and a user-friendly graphical user interface are provided to remotely analyze the transmitted data and to permit system maintenance and upkeep. The system of the invention has useful application to the collection of patient clinical data during drug trials and medical testing for regulatory approvals as well as management of patients with chronic diseases.
Owner:CLEARPATH PARTNERS

Fabric or garment with integrated flexible information infrastructure

A fabric, in the form of a woven or knitted fabric or garment, including a flexible information infrastructure integrated within the fabric for collecting, processing, transmitting and receiving information concerning-but not limited to-a wearer of the fabric. The fabric allows a new way to customize information processing devices to "fit" the wearer by selecting and plugging in (or removing) chips / sensors from the fabric thus creating a wearable, mobile information infrastructure that can operate in a stand-alone or networked mode. The fabric can be provided with sensors for monitoring physical aspects of the wearer, for example body vital signs, such as heart rate, EKG, pulse, respiration rate, temperature, voice, and allergic reaction, as well as penetration of the fabric. The fabric consists of a base fabric ("comfort component"), and an information infrastructure component which can consist of a penetration detection component, or an electrical conductive component, or both. The preferred penetration detection component is a sheathed optical fiber. The information infrastructure component can include, in addition to an electrically conductive textile yarn, a sensor or a connector for a sensor. A process is provided for making an electrical interconnection between intersecting electrically conductive yarns. Furthermore, a process is established for sheathing the plastic optical fiber and protecting it.
Owner:GEORGIA TECH RES CORP

System and method for dynamically adjusting patient therapy

A system and method of managing therapy provided to patients in an institution. The system monitors all aspects of the medication delivery to a patient, as well as other information related to the patient, such as values of vital signs, laboratory results and patient factors such as history, diagnosis, allergies and the like. The system includes one or more databases of information, including institutionally developed rules, guidelines and protocol representing the best medical practices of the institution. The system provides alerts and / or recommendations based on the application of the rules to the information being monitored, and alerts care givers accordingly, providing for dynamic adjustment of the patient's therapy. The system also monitors the status of the alerts, and if no action is taken in a selected period of time, may escalate the priority of the alert and / or halt the delivery of medication to the patient until the alert is resolved.
Owner:CAREFUSION 303 INC

Alarm system that processes both motion and vital signs using specific heuristic rules and thresholds

The invention provides a body-worn monitor that measures a patient's vital signs (e.g. blood pressure, SpO2, heart rate, respiratory rate, and temperature) while simultaneously characterizing their activity state (e.g. resting, walking, convulsing, falling). The body-worn monitor processes this information to minimize corruption of the vital signs by motion-related artifacts. A software framework generates alarms / alerts based on threshold values that are either preset or determined in real time. The framework additionally includes a series of ‘heuristic’ rules that take the patient's activity state and motion into account, and process the vital signs accordingly. These rules, for example, indicate that a walking patient is likely breathing and has a regular heart rate, even if their motion-corrupted vital signs suggest otherwise.
Owner:SOTERA WIRELESS

Fabric-based sensor for monitoring vital signs

The present invention comprises a fabric-based sensor for monitoring vital signs or other electrical impulses of a subject. The sensor is woven or knitted from conductive fibers and, when in contact with the body, receives signals from the wearer and transmits them to a processing or monitoring device through a data-output terminal. The sensor may be integrated into the fabric of a garment or used independently as a conductive patch. Additionally, the sensor may provide bi-directional communication by both monitoring electrical impulses and sending them.
Owner:GEORGIA TECH RES CORP

Method for generating alarms/alerts based on a patient's posture and vital signs

The invention provides a body-worn monitor that measures a patient's vital signs (e.g. blood pressure, SpO2, heart rate, respiratory rate, and temperature) while simultaneously characterizing their activity state (e.g. resting, walking, convulsing, falling). The body-worn monitor processes this information to minimize corruption of the vital signs by motion-related artifacts. A software framework generates alarms / alerts based on threshold values that are either preset or determined in real time. The framework additionally includes a series of ‘heuristic’ rules that take the patient's activity state and motion into account, and process the vital signs accordingly. These rules, for example, indicate that a walking patient is likely breathing and has a regular heart rate, even if their motion-corrupted vital signs suggest otherwise.
Owner:SOTERA WIRELESS

Two-part patch sensor for monitoring vital signs

A two-component monitoring device and system for monitoring blood pressure from a patient is disclosed herein. The two-component monitoring device includes a disposable component and a main component. The disposable component features: i) a backing structure having a first aperture; and ii) first and second electrodes, each electrode connected to the backing structure and including an electrical lead and a conductive electrode material, and configured to generate an electrical signal that passes through the electrical lead when the conductive electrode material contacts the patient. The main component includes: i) first and second connectors configured to connect to the first and second electrical leads to receive the first and second electrical signals; and ii) an optical component comprising a light source that generates optical radiation and a photodetector that detects the optical radiation. The optical component inserts into the first aperture of the disposable component. The main component optionally includes an acoustic sensor. The system utilizes a processing device, connected to the monitoring device by a cable which receives and processes a plurality of signals to determine real-time blood-pressure values for the patient.
Owner:SOTERA WIRELESS

Vital signs probe

A combination of a patient core temperature sensor and the dual-wavelength optical sensors in an ear probe or a body surface probe improves performance and allows for accurate computation of various vital signs from the photo-plethysmographic signal, such as arterial blood oxygenation (pulse oximetry), blood pressure, and others. A core body temperature is measured by two sensors, where the first contact sensor positioned on a resilient ear plug and the second sensor is on the external portion of the probe. The ear plug changes it's geometry after being inserted into an ear canal and compress both the first temperature sensor and the optical assembly against ear canal walls. The second temperature sensor provides a reference signal to a heater that is warmed up close to the body core temperature. The heater is connected to a common heat equalizer for the temperature sensor and the pulse oximeter. Temperature of the heat equalizer enhances the tissue perfusion to improve the optical sensors response. A pilot light is conducted to the ear canal via a contact illuminator, while a light transparent ear plug conducts the reflected lights back to the light detector.
Owner:FRADEN JACOB

Patch sensor for measuring blood pressure without a cuff

A monitoring device, method and system for monitoring vital signs of a patient over a wireless network are disclosed herein. The monitoring device includes an adhesive patch sensor, typically mounted on a patient's head, and a processing component. The adhesive patch sensor typically includes an optical system that generates an optical waveform, and an electrode that generates an electrical waveform. The processing component processes the optical and electrical waveforms, along with a calibration table, to determine the patient's vital signs.
Owner:TRIAGE WIRELESS

Monitoring device with an accelerometer, method and system

A monitoring device for monitoring the vital signs of a user is disclosed herein. The monitoring device is preferably comprises an article, an optical sensor, an accelerometer and processor. The optical sensor preferably comprises a photodetector and a plurality of light emitting diodes. A sensor signal from the optical sensor is processed with a filtered accelerometer output signal from the accelerometer to create a filtered vital sign signal used to generate a real-time vital sign for a user.
Owner:FRX POLYMERS LLC +1

System and method for using impulse radio technology to track and monitor animals

A system, electronic monitor and method are provided that utilize the communication capabilities and positioning capabilities of impulse radio technology to enable people (e.g., broadcasters, fans, trainers, jockeys) to track a position of a horse as it moves around a race track and / or to enable people to monitor one or more vital signs of the moving horse. The present invention may also be used track and / or monitor other animals such as dogs and people.
Owner:TDC ACQUISITION HLDG

Patient monitoring system

A medical monitoring system includes a central station adapted to receive vital signs data concerning a plurality of patients, and one or more transmitter / receivers associated with the central station. At least one patient monitor is configured to monitor a particular one of the plurality of patients by collecting vital signs data from the particular patient, and configured to establish communications with the central station and communicate the collected vital signs data to the central station via the one or more transmitter / receivers. The at least one patient monitor is operable by a user to identify the particular patient from the plurality of patients, and to inform the central station of the identity of the particular patient. The central station is configured to associate the vital signs data received from the at least one patient monitor with the particular patient. The system, transmitter / receivers and at least one patient monitor may be wireless or wired. There is also a method for monitoring a patient.
Owner:WELCH ALLYN INC

System and method for dynamically adjusting patient therapy

A system and method of managing therapy provided to patients in an institution. The system monitors all aspects of the medication delivery to a patient, as well as other information related to the patient, such as values of vital signs, laboratory results and patient factors such as history, diagnosis, allergies and the like. The system includes one or more databases of information, including institutionally developed rules, guidelines and protocol representing the best medical practices of the institution. The system provides alerts and / or recommendations based on the application of the rules to the information being monitored, and alerts care givers accordingly, providing for dynamic adjustment of the patient's therapy. The system also monitors the status of the alerts, and if no action is taken in a selected period of time, may escalate the priority of the alert and / or halt the delivery of medication to the patient until the alert is resolved.
Owner:CAREFUSION 303 INC

Method for measuring patient motion, activity level, and posture along with ptt-based blood pressure

The invention provides a system and method for measuring vital signs (e.g. SYS, DIA, SpO2, heart rate, and respiratory rate) and motion (e.g. activity level, posture, degree of motion, and arm height) from a patient. The system features: (i) first and second sensors configured to independently generate time-dependent waveforms indicative of one or more contractile properties of the patient's heart; and (ii) at least three motion-detecting sensors positioned on the forearm, upper arm, and a body location other than the forearm or upper arm of the patient. Each motion-detecting sensor generates at least one time-dependent motion waveform indicative of motion of the location on the patient's body to which it is affixed. A processing component, typically worn on the patient's body and featuring a microprocessor, receives the time-dependent waveforms generated by the different sensors and processes them to determine: (i) a pulse transit time calculated using a time difference between features in two separate time-dependent waveforms, (ii) a blood pressure value calculated from the time difference, and (iii) a motion parameter calculated from at least one motion waveform.
Owner:SOTERA WIRELESS

Electronic data gathering for emergency medical services

An apparatus for capturing and storing medical emergency information under the adverse circumstances of the emergency scene, without relying on multiple computers and remote communications for support during use. To accomplish data capture and storage, use of a single ruggedized hand held computer with a graphical user interface employing a touch sensitive display screen, and pen stylus for simplifying documentation of patient demographic, history and medications data, focal patient complaints and problems, vital signs, physical exam findings, medication administration, routes and quantities, motorized vehicle crash history, case disposition, emergency crew, and case review and notes. Collection of focal patient complaints and problems is simplified through a body graphical user interface. Easily accessed reference databases for drugs and protocols support the emergency medical technician. Handwriting recognition, signature capture and numerical data entry enable obtaining of necessary crew and patient signatures and other data, including patient refusal of care. Through the use of a variety of secure communication interfaces, printing or transfer of all data collected is provided to other systems. Full compliance with NHTSA and Utstein minimal data reporting set requirements.
Owner:ZAK CHRISTOPHER +2

Hand-held monitor for measuring vital signs

The invention provides a monitor for measuring blood pressure and other vital signs from a patient without using a cuff. The monitor features a housing with a first surface that, in turn, supports a first sensor. The first sensor features: i) an optical system with one or more light sources (e.g., LEDs or laser diodes) that generate optical radiation, and a photodetector oriented to collect radiation after it irradiates the patient and in response generate an optical signal; and ii) a first electrode. A second sensor features a second electrode paired with the first electrode that collects an electrical signal from the patient. A microprocessor in electrical communication with the first and second sensor receives the optical and electrical signals and processes them with an algorithm to determine systolic and diastolic blood pressure.
Owner:TRIAGE WIRELESS

BODY-WORN SYSTEM FOR MEASURING CONTINUOUS NON-INVASIVE BLOOD PRESSURE (cNIBP)

The present invention provides a technique for continuous measurement of blood pressure based on pulse transit time and which does not require any external calibration. This technique, referred to herein as the ‘Composite Method’, is carried out with a body-worn monitor that measures blood pressure and other vital signs, and wirelessly transmits them to a remote monitor. A network of body-worn sensors, typically placed on the patient's right arm and chest, connect to the body-worn monitor and measure time-dependent ECG, PPG, accelerometer, and pressure waveforms. The disposable sensors can include a cuff that features an inflatable bladder coupled to a pressure sensor, three or more electrical sensors (e.g. electrodes), three or more accelerometers, a temperature sensor, and an optical sensor (e.g., a light source and photodiode) attached to the patient's thumb.
Owner:SOTERA WIRELESS

System and method using impulse radio technology to track and monitor people needing health care

A system, electronic monitor and method are provided that utilize impulse radio technology to alert medical personnel when a patient needs medical assistance. In addition, the present invention includes a system, electronic monitor and method that utilize the communication capabilities and positioning capabilities of impulse radio technology to enable medical personnel to monitor one or more vitals signs of a patient and / or to enable medical personnel to determine a current a position of a patient in a building such as a hospital, nursing home or their home.
Owner:HUMATICS CORP

Device for determining respiratory rate and other vital signs

A body-worn sensor that measures respiratory rate and other vital signs using an acoustic sensor (e.g., a small-scale sensor). The body-worn sensor features a chest-worn patch sensor that combines both the acoustic sensor and an ECG electrode into a single adhesive patch. To measure blood pressure, the device additionally performs a ‘composite’ PTT-based measurement that features both pressure-dependent and pressure-free measurements. The acoustic sensor measures respiration rate by recording sounds related to the patient's inspiration and expiration. The acoustic sensor is typically placed near the patient's trachea, but can also be placed on the middle right and left side of the chest, and the middle right and left side of the back.
Owner:SOTERA WIRELESS

RFMON: devices and methods for wireless monitoring of patient vital signs through medical sensor readings from passive RFID tags

A system for monitoring a selected physiological activity of a person includes a passive wireless tag including a sensor for monitoring the selected physiological activity of the person and a Radio Frequency Identification (RFID) tag coupled to the sensor. The RFID tag may include a unique identifier and may be configured to, when polled, generate, store and transmit a monitoring signal representative of the selected physiological activity and of the RFID tag unique identifier. A monitoring and processing station may be configured to poll the passive wireless tag and to receive and process the monitoring signal transmitted from the passive wireless tag.
Owner:INDAL WIDGET WORKS

BODY-WORN SYSTEM FOR MEASURING CONTINUOUS NON-INVASIVE BLOOD PRESSURE (cNIBP)

The present invention provides a technique for continuous measurement of blood pressure based on pulse transit time and which does not require any external calibration. This technique, referred to herein as the ‘Composite Method’, is carried out with a body-worn monitor that measures blood pressure and other vital signs, and wirelessly transmits them to a remote monitor. A network of body-worn sensors, typically placed on the patient's right arm and chest, connect to the body-worn monitor and measure time-dependent ECG, PPG, accelerometer, and pressure waveforms. The disposable sensors can include a cuff that features an inflatable bladder coupled to a pressure sensor, three or more electrical sensors (e.g. electrodes), three or more accelerometers, a temperature sensor, and an optical sensor (e.g., a light source and photodiode) attached to the patient's thumb.
Owner:SOTERA WIRELESS

Internet based system for monitoring blood test, vital sign and exercise information from a patient

The invention provides a system for monitoring a patient that includes: 1) a first database that stores the patient's blood test information; 2) a monitoring device that collects the patient's cardiovascular and exercise information; 3) a second database that receives cardiovascular and exercise information from the monitoring device; and 4) an Internet-based system that displays the blood test, cardiovascular, and exercise information.
Owner:BERKELEY HEARTLAB

Monitoring device, method and system

A monitoring device (20) for monitoring the vital signs of a user is disclosed herein. The monitoring device (20) is preferably an article (25) having an optical sensor (30) and a circuitry assembly (35). The monitoring device (20) preferably provides for the display of the following information about the user: pulse rate; blood oxygenation levels; calories expended by the user of a pre-set time period; target zones of activity; time; distance traveled; and / or dynamic blood pressure. The article (25) is preferably a band worn on a user's wrist, arm or ankle.
Owner:IMPACT SPORTS TECH

Body-worn system for continuously monitoring a patient's bp, hr, spo2, rr, temperature, and motion; also describes specific monitors for apnea, asy, vtac, vfib, and 'bed sore' index

The invention provides a body-worn monitor that measures a patient's vital signs (e.g. blood pressure, SpO2, heart rate, respiratory rate, and temperature) while simultaneously characterizing their activity state (e.g. resting, walking, convulsing, falling). The body-worn monitor processes this information to minimize corruption of the vital signs by motion-related artifacts. A software framework generates alarms / alerts based on threshold values that are either preset or determined in real time. The framework additionally includes a series of ‘heuristic’ rules that take the patient's activity state and motion into account, and process the vital signs accordingly. These rules, for example, indicate that a walking patient is likely breathing and has a regular heart rate, even if their motion-corrupted vital signs suggest otherwise.
Owner:SOTERA WIRELESS

Multifunctional telemetry alert safety system (MTASS)

A personnel accountability and situational awareness monitoring communications system for emergency personnel that comprises wireless network-adaptable monitoring devices, peripherals and base station console software for telemetry monitoring of real-time information at a plurality of personnel accountability and situational awareness parameters of critical data about the safety, health and whereabouts of first responders deployed in typically hazardous environments. Exterior incident command, including fire, rescue, safety and other emergency agencies achieve real-time command view and control over a variety of personnel accountability and safety parameters during emergency response activities of personnel wearing the system of the present invention portable device while operating within the wireless network of an emergency incident scene. Configured to be carried by emergency services personnel while deployed on scene, the portable device is a multi-functional sensing and communicating integration of accountability and situational awareness technologies consolidated into one portable, telemetry device. The portable device's multifunctional integrated technology includes the monitoring, telemetry and alert notification of accountability identification, location, assignment notification, vital signs, ambient vicinity temperature, SCBA status, combustible gas sensing, video streaming, “evacuation” recall signaling, signal tracking and multi-alarm signaling if the wearer has either low remaining air pressure / time, impending thermal breakthrough, low battery power, exceeds the safety threshold for safe heart rate or external body temperature readings, or becomes motionless for a predetermined time period.
Owner:MONTENERO III JOHN MATHEW

Distributed Patient Monitoring System

A distributed patient monitoring system for visually monitoring patients and patient parameters using portable processing devices in different remote locations includes a monitoring processor. The monitoring processor is responsive to user initiated commands from multiple different portable processing devices in different remote locations and includes an input processor and a data processor. The input processor acquires vital sign parameters and associated video data representative of multiple sequences of video images of corresponding multiple different patients. The data processor processes the vital sign parameters and associated video data to provide processed first video data representing an image sequence including a composite image including a first area showing live video of a selected first patient and a second area presenting vital sign parameters of the selected first patient. The data processor also processes the vital sign parameters and associated video data to provide processed second video data representing an image sequence including a composite image including a first area showing live video of a selected second patient and a second area presenting vital sign parameters of the selected second patient. A communication network has bandwidth sufficient to communicate the processed first video data and second video data to first and second portable processing devices respectively of the multiple different portable processing devices in different remote locations in response to commands received from the first and second portable processing devices respectively.
Owner:CERNER INNOVATION

Monitoring device, method and system

A monitoring device (20) for monitoring the vital signs of a user is disclosed herein. The monitoring device (20) is preferably an article (25) having an optical sensor (30) and a circuitry assembly (35). The optical sensor (30) preferably comprises a photodetector (130) and a plurality of light emitting diodes (135). The monitoring device (20) preferably provides for the display of the following information about the user: pulse rate; blood oxygenation levels; calories expended by the user of a pre-set time period; target zones of activity; time; distance traveled; and / or dynamic blood pressure.
Owner:IMPACT SPORTS TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products