Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

7960results about How to "Guaranteed normal transmission" patented technology

High-rigidity forceps tip assembly for active forceps and active forceps equipped with the same

Provided is a forceps tip assembly capable of supporting a forceps tip with high rigidity in order to realize a laparoscopic surgery requiring a significant power with the forceps tip, such as an organ removal surgery which has been heretofore difficult to be performed by a robot for medical use. The forceps tip assembly includes: a forceps tip supporting member which has a supporting part for supporting a forceps tip and three leg parts which are disposed at even intervals in a circumferential direction around a central axis line C1 and fixed to the supporting part so as to protrude backward from the supporting part; and three back-and-forth moving members which are disposed at even intervals in a circumferential direction around a predetermined central axis line C2 extending in a front-to-rear direction, which have their front end portions coupled with the three leg pads swingably and slidably in a direction orthogonal to the predetermined central axis line C2 and which are mutually coupled together as relatively movable in the extending direction of central axis line C2.
Owner:THE UNIV OF TOKYO

Ranging method in a broadband wireless access communication system

A method for transmitting a ranging code from a base station to subscriber stations to prevent collision during a random access by the subscriber stations in an Orthogonal Frequency Division Multiplexing / Orthogonal Frequency Division Multiple Access (OFDM / OFDMA) communication system. The method includes allocating connection identifiers (CIDs) for identifying the subscriber stations, allocating group IDs to the CIDs to divide the subscriber stations into a predetermine number of groups, and allocating ranging codes for distinguishing subscriber stations in a group corresponding to each of the allocated group IDs.
Owner:SAMSUNG ELECTRONICS CO LTD

Millimeter-wave quasi-optical integrated dielectric lens antenna and array thereof

InactiveCN101662076AWith quasi-optical Gaussian beam radiation characteristicsGuaranteed normal transmissionAntenna arraysDielectric resonator antennaDielectric substrate
The invention relates to the technical field of radar, in particular to a millimeter-wave quasi-optical integrated dielectric lens antenna and an array thereof. The array consists of a microstrip integrated antenna, a dielectric lens, an objective lens, an array base, a reflecting mirror, a protective cover and a beam transfer switch; one end face of the dielectric lens is a hemisphere or an ellipsoid, while the other end face is a cylindrical section; the microstrip integrated antenna is generated by an dielectric substrate, the front surface of the dielectric substrate is closely adhered tothe cylindrical section of the dielectric lens and serves as a feed source, and the back surface is grounded; the hemispherical or ellipsoidal end face of the dielectric lens is an antenna radiating surface; the length of the cylindrical part of the dielectric lens can be changed; the antenna array is arranged into a linear array or an area array; the array base and the reflecting mirror have conical quasi-optical reflecting mirror surfaces; the focus of the objective lens of the linear array or the area array aligns with the central line of the dielectric lens; the protective cover is arranged outside; and the antenna array is controlled by the beam transfer switch. The antenna structure has strong shock resistance and dust prevention, and is suitable for millimeter-wave radars for planes, automobiles and ships, and receiving/emitting sensing of communication equipment.
Owner:阮树成

Enhanced Transmitter for Wireless Power Transmission

ActiveUS20150340910A1Improved power transmission efficiencyFast wayElectromagnetic wave systemTransformersVIT signalsIntegrated circuit
An enhanced transmitter for wireless power transmission is disclosed. The transmitter may be able to transmit radio frequency (RF) waves or pockets of energy for charging or powering an electronic device. The transmitter may include antenna element arrangements for receiving RF waves from a plurality of wireless sources and process them using a dedicated RF integrated circuit (RFIC) and set of antenna elements for receiving RF input signals from a plurality of wireless power sources. A digital signal processor (DSP) may be used to control reception using the dedicated RFIC and antenna elements of reception and to control transmission of wireless power selecting the transmitting RFICs and configuration of antenna elements to send RF waves or pockets of energy to a wireless receiver. The frequency of RF waves received may be sampled through a down converter array and line addressing devices to send the signals received to a micro-controller including a proprietary algorithm which control switching and processing necessary for faster and enhanced wireless power transmission, thus improving transmission efficiency.
Owner:ENERGOUS CORPORATION

Coaxial catheter instruments for ablation with radiant energy

InactiveUS20050038419A9Rapid and effective photoablationLess timeStentsUltrasound therapyCoaxial catheterTarget tissue
Ablation methods and instruments are disclosed for creating lesions in tissue, especially cardiac tissue for treatment of arrhythmias and the like. Percutaneous ablation instruments in the form of coaxial catheter bodies are disclosed having at least one central lumen therein and having one or more balloon structures at the distal end region of the instrument. The instruments include an energy emitting element which is independently positionable within the lumen of the instrument and adapted to project radiant energy through a transmissive region of a projection balloon to a target tissue site. The instrument can optionally include at least one expandable anchor balloon disposed about, or incorporated into an inner catheter body designed to be slid over a guidewire. This anchor balloon can serve to position the device within a lumen, such as a pulmonary vein. A projection balloon structure is also disclosed that can be slid over the first (anchor balloon) catheter body and inflated within the heart, to define a staging from which to project radiant energy. An ablative fluid can also be employed outside of the instrument (e.g., between the balloon and the target region) to ensure efficient transmission of the radiant energy when the instrument is deployed. In another aspect of the invention, generally applicable to a wide range of cardiac ablation instruments, mechanisms are disclosed for determining whether the instrument has been properly seated within the heart, e.g., whether the device is in contact with a pulmonary vein and / or the atrial surface, in order to form a lesion by heating, cooling or projecting energy. This contact-sensing feature can be implemented by an illumination source situated within the instrument and an optical detector that monitors the level of reflected light. Measurements of the reflected light (or wavelengths of the reflected light) can thus be used to determine whether contact has been achieved and whether such contact is continuous over a desired ablation path.
Owner:CARDIOFOCUS INC

Amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the above device

The present invention provides an amplifying repeater, which is constructed in such a manner that a ferrite core is inserted into a coil with a pre-determined number of winds to increase an induced electromotive force caused by an increase in flux linkage using a time-varying magnetic field of electromagnetic waves at a position distant from various electromagnetic wave generating sources by a predetermined distance and the induction coil and a variable condenser for inducing resonance are connected to each other to increase current while reducing a resistant component existing in the induction coil to intensify and amplify the magnetic field of electromagnetic waves. Furthermore, the present invention provides a wireless power conversion charging device using the magnetic field of electromagnetic waves, which is located between an electromagnetic wave generating source transmitter and a receiving coil or attached to the transmitter and receiving coil. The wireless power conversion charging device includes a rectifying diode for rectifying an electromotive force induced in a construction in which a resonance and impedance matching variable condenser is connected to a coil in series or in parallel in order to transmit maximum induced power to a charging battery that is a load using electromagnetic waves amplified by the amplifying repeater, and a smoothing condenser for smoothing the rectified voltage. Accordingly, charging power required for various small power electronic devices can be provided and power can be supplied to various loads.
Owner:JC PROTEK +1

Illumination system for microlithography

An illumination system for a microlithography projection exposure apparatus for illuminating an illumination field (65) with the light from an assigned light source (11) comprises a pupil shaping unit (15, 30) for receiving light from the assigned light source (11) and for generating a predeterminable basic light distribution in a pupil plane (31) of the illumination system and a transmission filter (36) assigned to the pupil shaping unit (15, 30) and having at least one array of individually drivable individual elements for the spatially resolving transmission filtering of the light impinging on the transmission filter in or in proximity to a pupil plane (31, 35) of the illumination system, the transmission filter (36) being designed for generating a predeterminable correction of the basic light distribution. An illumination system of this type can generate a multiplicity of location-dependent intensity distributions in a pupil plane of the illumination system, a high transmittance being ensured. The location-dependent intensity distribution in the pupil plane generates an angle-dependent intensity distribution on the illumination field of the illumination system which can be optimized for a mask structure to be imaged.
Owner:CARL ZEISS SMT GMBH

Data transmission system using a human body as a signal transmission path

A data transmission system using a human body as a signal transmission path includes a transmitter and a receiver. The transmitter uses a pair of electrodes which are held in close proximity to the skin of the human body. The transmitter transmits data to the receiver through the signal transmission path partly extending through the human body when a user carrying the transmitter touches a touch electrode of the receiver. The electrodes are integrated into a garment worn by the user in such a manner that the electrodes are kept in a closely facing relation to the skin of the user, thereby establishing the electrical path extending through the human body. With the integration of the two electrodes into the garment, the user wearing the garment as an everyday clothes or uniform can be easy and convenient to carry the transmitter for successful transmission of the data.
Owner:PANASONIC ELECTRIC WORKS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products