Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3439results about "Intraocular lens" patented technology

Ophthalmic dynamic aperture

Embodiments of the present invention relate to an electro-active element having a dynamic aperture. The electro-active element provides increased depth of field and may be used in a non-focusing ophthalmic device that that is spaced apart from but in optical communication with an intraocular lens, a corneal inlay, a corneal onlay, a contact lens, or a spectacle lens that provide an optical power. The electro-active element provides increased depth of field and may also be used in a focusing or non-focusing device such as an intraocular optic, an intraocular lens, a corneal inlay, a corneal onlay, or a contact lens which may or may not have an optical power. By changing the diameter of dynamic aperture either increased depth of field or increased light reaching the retina may be achieved.
Owner:E VISION LLC +1

Accommodating intraocular lens system utilizing direct force transfer from zonules and method of use

InactiveUS20070088433A1Efficiently manipulatedEnhancing resistance to migrationIntraocular lensIntraocular lensOptical power
An accommodating intraocular lens is provided having optical parameters that are altered in-situ, wherein an optic portion of the lens includes a lens piston that alters the shape of a lens element of the lens to alter the optical power of the lens, responsive to forces applied to a haptic portion to the lens by contraction of the ciliary muscles. Forces applied to the haptic portion are transferred hydraulically to cause the lens to become more or less accommodated. The haptic portion is retained in a fixed unaccommodated state during an initial healing period following implantation to facilitate affixation of the haptic portion to the capsule.
Owner:POWERVISION

Intraocular lens with accommodative properties

InactiveUS6200342B1Focus assistPrevent excessive lateral movement and luxationIntraocular lensPupil diameterIntraocular lens
A new lens design and method of implantation uses the change in pupil diameter of the eye concurrent with the changes induced by a contraction of the ciliary muscle during the accommodative reflex, in order to assist in focusing of nearby objects. This new intraocular lens consists of two parts. The posterior part or haptic part is inserted behind the iris and in front of the natural lens or artificial implant. Its main purpose is to participate in the accommodative mechanism and to prevent excessive lateral movement and luxation of the lens. An anterior or optical part is made of flexible material and is placed before the iris. Its diameter is variable but should be large enough to cover the pupillary margins to some degree under various conditions of natural dilation. The anterior and posterior part of the lens are separated by a compressible circular groove in which the iris will settle. The diameter of this groove is slightly larger than the pupillary diameter measured under normal photopic daylight conditions and for distance vision. Since the pupil becomes smaller in near vision, the iris will exert a slight pressure at the level of the groove of the lens which will cause a progressive and evenly distributed flexing of the anterior part of the intraocular lens, as the diameter of the compressible circular groove slightly decreases. This flexing will induce an increase in refractive power which corresponds to a variable part of the amount necessary for focusing nearby objects.
Owner:TASSIGNON MARIE JOSE B

Apparatus for driving artificial retina using medium-range wireless power transmission technique

Provided is an apparatus for driving an artificial retina using a medium-range power transmission technique. The apparatus can wirelessly transmit power to an artificial retina circuit within a medium range of about 1 m using resonance between a first coil equipped around a user's waist and a second coil implanted in a user's eye. Thus, it is possible to solve the difficulty of implanting a coil in a lens, provide convenience to a user by eliminating the necessity of artificial glasses, and stably supply power to the artificial retina circuit. In addition, it is possible to remarkably lessen the difficulty in connecting the second coil with the artificial retina circuit in an eye.
Owner:ELECTRONICS & TELECOMM RES INST

Intraocular lens having extended depth of focus

An ophthalmic lens for providing enhanced or extended depth of focus includes an optic having an aperture disposed about an optical axis. The optic includes a first surface having a first shape and an opposing second surface having a second shape, the first and second surfaces providing, a base power and, in some embodiments an add power. The optic further includes an extended focus mask disposed upon at least one of the first shape and the second shape that is configured to provide the enhanced or extended depth of focus for one or more foci of the optic, as compared to a similar optic not having the extended focus mask.
Owner:AMO REGIONAL HLDG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products