Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

252 results about "Refractive lens" patented technology

Reflective lithography mask inspection tool based on achromatic Fresnel optics

A mask blank inspection tool includes an AFO having a diffractive lens and a refractive lens formed on a common substrate. The diffractive lens is a Fresnel zone plate and the refractive lens is a refractive Fresnel lens. The AFO is used to image light from a defect particle on a multilayer mask blank or the surface of the multilayer mask blank to a detector.
Owner:XRADIA

Achromatic fresnel optics based lithography for short wavelength electromagnetic radiations

A lithography apparatus having achromatic Fresnel objective (AFO) that combines a Fresnel zone plate and a refractive Fresnel lens. The zone plate provides high resolution for imaging and focusing, while the refractive lens takes advantage of the refraction index change properties of appropriate elements near absorption edges to recombine the electromagnetic radiation of different energies dispersed by the zone plate. This compound lens effectively solves the high chromatic aberration problem of zone plates. The lithography apparatus allows the use of short wavelength radiation in the 1-15 nm spectral range to print high resolution features as small as 20 nm.
Owner:XRADIA

Apparatus and method for an improved lens structure for polymer wave guides which maximizes free space light coupling

A polymer waveguide assembly. The assembly includes a polymer waveguide have a plurality of waveguide cores and an associated plurality of lenses respectively. The assembly also includes a molded lens structure having a support region, a primary refractive surface and a secondary refractive lens. The polymer waveguide is positioned onto the support surface of the molded lens structure so that the waveguide lenses are in optical alignment with the primary refractive lens and the secondary refractive lens of the molded waveguide structure. The lenses of the polymer waveguide are capable of collimating in the X and Y directions respectively. The primary refractive lens and the secondary refractive lens are both capable of collimating light in the Z direction. With this arrangement, a substantial; portion of the light passing through the secondary lens toward the waveguide cores is within the acceptance angle of the plurality of waveguides lenses respectively. The secondary lens thus creates a shallow angle of convergence relative to the input of the plurality of lenses of the waveguide. As a result, issues caused by misalignment are minimized and optical coupling is improved.
Owner:POA SANA LIQUIDATING TRUST

Off-axis reflective transmit telescope for a directed infrared countermeasures (DIRCM) system

An off-axis reflective transmit telescope for a DIRCM system is mounted on the gimbal along a transmit-axis offset laterally from the optical axis of the receive telescope but nominally aligned with the line-of-sight of the receive telescope to transmit a laser beam. The telescope comprises an optical port optically coupled to a laser to receive and direct the laser beam away from the dome and a reflective optical assembly that reflects the laser beam through the dome. The reflective optical assembly comprises an off-axis mirror segment and a second optical element that together precompensate the laser beam for dome aberrations induced by the lateral offset of the transmit telescope's transmit axis from the optical axis. The off-axis mirror segment comprises a segment of a parent mirror having an aspheric curvature (e.g. parabolic, elliptical or higher-order asphere) about an axis of symmetry. The segment is offset so that it is not centered on the axis of symmetry of the parent mirror. The use of the off-axis mirror segment allows the optical port and any folding mirror to be positioned so that they do not obscure the reflected laser beam. The second optical element may be a segment of a dome corrector parent lens, a prism or a refractive lens formed on the front surface of the off-axis minor segment.
Owner:RAYTHEON CO

Method of Refraction Surgery of the Eye and a Tool for Implanting Intraocular Refractive Lens

A reduction of eye trauma is achieved during opthalmolic surgery branch for implanting the intraocular refractive lens to the anterior chamber of the eye. The pupil is extended by mydriatic compounds and after anesthesia the cornea cut is made (clear cornea—3 mm). Thereafter, the anterior chamber of the eye is filled with viscoelastic compound with low molecular weight and then the refractive lens is implanted with the help of said cannula, the working face of the cannula at the middle between the lens edge and the border of the optic area, with the edge bent on the cannula face. The end by the top of the bending the refractive lens is introduced into the cornea cut and set in the posterior chamber of the eye. Thereafter, vacuum is removed and the cannula is detached from the refractive lens, and taken off the anterior chamber of the eye by the reverse movement. The refractive lens cannula is made as a tube with round or oval cross-section with inner diameter 0.5-2.5 mm and wall thickness not less than 0.05 mm. The tube is bent at 110-160, supplied with limiter, and working end that has diameter of the round cross-section of 1.0-2.0 mm or ellipse-shaped cross-section with small and big axes 0.6-0.9 mm and 1.5-2.5 mm, respectively.
Owner:LEONID ORBACHEVSKY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products