Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3992 results about "Lens array" patented technology

Fast Computational Camera Based On Two Arrays of Lenses

Method and apparatus for a fast (low F / number) computational camera that incorporates two arrays of lenses. The arrays include a lenslet array in front of a photosensor and an objective lens array of two or more lenses. Each lens in the objective lens array captures light from a subject. Each lenslet in the lenslet array captures light from each objective lens and separates the captured light to project microimages corresponding to the objective lenses on a region of the photosensor under the lenslet. Thus, a plurality of microimages are projected onto and captured by the photosensor. The captured microimages may be processed in accordance with the geometry of the objective lenses to align the microimages to generate a final image. One or more other algorithms may be applied to the image data in accordance with radiance information captured by the camera, such as automatic refocusing of an out-of-focus image.
Owner:ADOBE INC

Apparatus for generating a plurality of beamlets

The invention relates to an apparatus for generating a plurality of charged particle beamlets, comprising a charged particle source for generating a diverging charged particle beam, a converging means for refracting said diverging charged particle beam and a lens array comprising a plurality of lenses, wherein said lens array is located between said charged particle source and said converging means.In this way, it is possible to reduce aberrations of the converging means.
Owner:ASML NETHERLANDS BV

Wafer level lens arrays for image sensor packages and the like, image sensor packages, and related methods

Image sensor packages, lenses therefore, and methods for fabrication are disclosed. A substrate having through-hole vias may be provided, and an array of lenses may be formed in the vias. The lenses may be formed by molding or by tenting material over the vias. An array of lenses may provide a color filter array (CFA). Filters of the CFA may be formed in the vias, and lenses may be formed in or over the vias on either side of the filters. A substrate may include an array of microlenses, and each microlens of the array may correspond to a pixel of an associated image sensor. In other embodiments, each lens of the array may correspond to an imager array of an image sensor. A wafer having an array of lenses may be aligned with and attached to an imager wafer comprising a plurality of image sensor dice, then singulated to form a plurality of image sensor packages.
Owner:APTINA IMAGING CORP

Apparatus and method for capturing still images and video using coded lens imaging techniques

An apparatus for capturing images. In one embodiment, the apparatus comprises: a coded lens array including a plurality of lenses arranged in a coded pattern and with opaque material blocking array elements that do not contain lenses; and a light-sensitive semiconductor sensor coupled to the coded lens array and positioned at a specified distance behind the coded lens array, the light-sensitive sensor configured to sense light transmitted through the lenses in the coded lens array.
Owner:REARDEN

Fabrication process for mastering imaging lens arrays

A process and method for fabricating a master lens array for use in the manufacture of duplicate lens arrays is provided. The fabrication methods provided herein are capable of maximizing the quality of the master lens array in an efficient and cost effective manner, thereby reducing the propagation of errors in the lenses formed using the master lens array.
Owner:FOTONATION LTD

Fabrication process for mastering imaging lens arrays

A process and method for fabricating a master lens array for use in the manufacture of duplicate lens arrays is provided. The fabrication methods provided herein are capable of maximizing the quality of the master lens array in an efficient and cost effective manner, thereby reducing the propagation of errors in the lenses formed using the master lens array.
Owner:FOTONATION LTD

Camera module with lens array

A camera module includes a plurality of lenses with different focal lengths, a supporting plate, an image sensor, and a processor. The supporting plate defines a plurality of through holes receiving the corresponding lenses. The image sensor includes a sensing area. The sensing area is configured for receiving light through the lenses and the through holes and converting the light into electrical signals. The processor is electrically connected to the image sensor. The processor is configured for processing the electrical signals to form sub-images of a same view of same objects with different depths of field and then combining the sub-images into a final image.
Owner:HON HAI PRECISION IND CO LTD

Lens barrel array and lens array and the method of making the same

InactiveUS20080158698A1High precision stabilityHigh thermal stabilityOptical articlesMountingsCamera lensPhysics
The present invention provides a lens barrel array, a lens array and a method of making the same. The lens barrel array is realized all together in collective operation, and intended to be separated later on to be used as lens barrels of individual module. The lens array including plates, each of which has a hollow portion, attached together and lenses mounted in the hollow portions respectively. The lens array is intended to be separated later on to be used as lens barrels of individual module. The method includes the steps of providing a plurality of plates with hollow portions thereon, installing lenses into the hollow portions respectively, and attaching the plates together to form lens barrel array with a plurality of lens, each of which includes the hollow portion and the lenses, intended to be separated later on to be used as lens barrels of individual module.
Owner:ETHER PRECISION

Compact camera module with lens array

A camera module includes a plurality of lenses with different focal lengths, a supporting plate, an image sensor, and a processor. The supporting plate defines a plurality of through holes receiving the corresponding lenses. The image sensor includes a sensing area. The sensing area is configured for receiving light through the lenses and the through holes and converting the light into electrical signals. The processor is electrically connected to the image sensor. The processor is configured for processing the electrical signals to form sub-images of a same view of same objects with different depths of field and then combining the sub-images into a final image.
Owner:HON HAI PRECISION IND CO LTD

Electro-optical foveated imaging and tracking system

Conventional electro-optical imaging systems can not achieve wide field of view (FOV) and high spatial resolution imaging simultaneously due to format size limitations of image sensor arrays. To implement wide field of regard imaging with high resolution, mechanical scanning mechanisms are typically used. Still, sensor data processing and communication speed is constrained due to large amount of data if large format image sensor arrays are used. This invention describes an electro-optical imaging system that achieves wide FOV global imaging for suspect object detection and local high resolution for object recognition and tracking. It mimics foveated imaging property of human eyes. There is no mechanical scanning for changing the region of interest (ROI). Two relatively small format image sensor arrays are used to respectively acquire global low resolution image and local high resolution image. The ROI is detected and located by analysis of the global image. A lens array along with an electronically addressed switch array and a magnification lens is used to pick out and magnify the local image. The global image and local image are processed by the processor, and can be fused for display. Three embodiments of the invention are described.
Owner:NEW SPAN OPTO TECH

Stereoscopic image capturing apparatus and stereoscopic image capturing system

A stereoscopic image capturing apparatus includes a first image acquisition unit including a first image formation lens unit forming an image of an object, and a first image sensor having a plurality of capturing pixels to receive the image formed by the first formation lens unit, and a second image acquisition unit including a second image formation lens unit forming a image of the object, a first lens array unit having a plurality of lenses to receive the image formed by the second image formation lens, and a second image sensor having a plurality of capturing pixels to receive the formed image through the first lens array unit. The second image acquisition unit is disposed at a distance in a horizontal direction from the first image acquisition unit when viewed from the object.
Owner:KK TOSHIBA

Lens array assisted focus detection

A focus detection device includes an image sensor and a plurality of lenslets. Each of the plurality of lenslets has a distinct conjugate length and is associated with a distinct portion of the image sensor.
Owner:INTELLECTUAL VENTURES FUND 83 LLC

Waveguide-Based Displays With Exit Pupil Expander

A near eye or heads up display system includes a scan beam projector engine, an optical waveguide, and an exit pupil expander (EPE) optically coupled between the scan beam projector engine and the optical waveguide. The EPE improves the optical performance of the display system. The EPE could include a diffusive optical element, diffractive optical element, micro-lens array (MLA), or relay of aspherical lenses. A dual MLA EPE may have cells that prevent cross-talk between adjacent pixels. A dual MLA EPE may have a non-periodic lens array. The optical power of one MLA may be different from the other MLA.
Owner:MICROSOFT TECH LICENSING LLC

Observer tracking autostereoscopic display

A spatially multiplexed autostereoscopic display is arranged to provide landscape and portrait operation. Multiple optical windows may be provided by spatial and temporal multiplexing techniques. A fast response lens array pair is aligned with a fast response spatial light modulator, and synchronized to provide first and second sets of images with first and second respective directionalities to provide first and second sets of respective optical windows. The first and second sets of optical windows may each comprise two or more optical windows in each viewing lobe. The optical windows may be arranged with an inclination to the vertical of 25 degrees to 65 degrees. An observer tracking system may be arranged to direct left and right eye image data to the left and right eyes of an observer, respectively, for landscape and portrait orientations of the display.
Owner:REALD SPARK LLC

Three-dimensional display

In the three-dimensional display, a two-dimensional display section generates a two-dimensional display image based on an image signal, and a lens array converts the wavefront of the display image light from the two-dimensional display section into a wavefront having a curvature which allows the display image light to focus upon a focal point where an optical path length from an observation point to the focal point is equal to an optical path length from the observation point to a virtual object point, so a viewer can obtain information about an appropriate focal length in addition to information about binocular parallax and a convergence angle. Therefore, consistency between the information about binocular parallax and a convergence angle and the information about an appropriate focal length can be ensured, and a desired stereoscopic image can be perceived without physiological discomfort.
Owner:SONY CORP

System for the production of a dynamic image for display

A system for the production of a dynamic image for use in holography includes a light source (16) which travels via a liquid crystal modulator (18) placed in the path of the light source (16). The output of the LC modulator (18) passes modulated light through a lens array (22) which itself guides light to an optically addressed spatial light modulator (24). The resulting real image from the optically addressed spatial light modulator (24) may be used in holography. The addressing frame-rate of the liquid crystal modulator (18) is substantially greater than the frame-rate of the optically addressed spatial light modulator (24).
Owner:F POSZAT HU

Spectrometry system with diffuser

A spectrometer comprises a plurality of isolated optical channels comprising a plurality of isolated optical paths. The isolated optical paths decrease cross-talk among the optical paths and allow the spectrometer to have a decreased length with increased resolution. In many embodiments, the isolated optical paths comprise isolated parallel optical paths that allow the length of the device to be decreased substantially. In many embodiments, each isolated optical path extends from a filter of a filter array, through a lens of a lens array, through a channel of a support array, to a region of a sensor array. Each region of the sensor array comprises a plurality of sensor elements in which a location of the sensor element corresponds to the wavelength of light received based on an angle of light received at the location, the focal length of the lens and the central wavelength of the filter.
Owner:VERIFOOD

Microelectrical mechanical structure (MEMS) optical modulator and optical display system

InactiveUS20050002086A1Eliminating light attenuation of lightEliminating expenseTelevision system detailsColor television detailsPlanar substrateActuator
A MEMS optical display system includes an illumination source for providing illumination light, a collimating lens for receiving the illumination light and forming from it collimated illumination light, and a converging microlens array having an array of lenslets that converge the collimated illumination light. The converging microlens array directs the illumination light to a microelectrical mechanical system (MEMS) optical modulator. The MEMS optical modulator includes, for example, a planar substrate through which multiple pixel apertures extend and multiple MEMS actuators that support and selectively position MEMS shutters over the apertures. A MEMS actuator and MEMS shutter, together with a corresponding aperture, correspond to pixel. The light from the converging microlens array is focused through the apertures and is selectively modulated according to the positioning of the MEMS shutters by the MEMS actuators, thereby to impart image information on the illumination light. The light is then passed to a diffused transmissive display screen by a projection microlens array.
Owner:MICROSOFT TECH LICENSING LLC

Autostereoscopic display

An autostereoscopic display and method of displaying multidimensional images involves a first lenticular array preferably of cylindrical lenses positioned between a viewer and a pixel array, and a second lenticular array also preferably of cylindrical lenses positioned between the first lenticular array and the viewer. The pixel array includes several pixel groups that project images through corresponding groups of first lenses within the first lenticular array. A pitch of the lenses within the second lenticular array differs from a pitch of the lenses in the first lens groups within the first lenticular array. The display can be manufactured or retrofit with the first and second lenticular arrays. By use of the first lenticular array, light from plural color pixels may be focussed to a single point so that color subpixels arranged in a direction transverse to the direction of the cylindrical lenses of the first lenticular array may be focussed to a single point on the secondary lenticular array and then as a single image to the user.
Owner:MEMS OPTICAL

Microstructures for producing optical devices, sieves, molds and/or sensors, and methods for replicating and using same

Microlens arrays include a substrate, an array of microlenses on a first side of the substrate and an aperture mask on a second side of the substrate. The aperture mask includes an array of apertures at optical axes of the lenses. A second array of apertures may be included in the aperture mask at randomized positions therein. The randomized apertures may be provided in the aperture mask by providing a diffusive layer between the aperture mask and the substrate, and directing coherent radiation through the lens array, the diffusive layer and aperture mask.
Owner:BRIGHT VIEW TECHNOLOGIES CORPORATION

System and method for solar energy capture and related method of manufacturing

A system and method of capturing solar energy, and related method of manufacturing, are disclosed. In at least one embodiment, the system includes a first lens array having a plurality of lenses, and a first waveguide component adjacent to the lens array, where the waveguide component receives light, and where the waveguide component includes an array of prism / mirrored facets arranged along at least one surface of the waveguide component. The system further includes at least one photovoltaic cell positioned so as to receive at least a portion of the light that is directed out of the waveguide. A least some of the light passing into the waveguide component is restricted from leaving the waveguide component upon being reflected by at least one of the prism / mirrored facets, hereby the at least some light restricted from leaving the waveguide component is directed by the waveguide toward the at least one photovoltaic cell.
Owner:RGT UNIV OF CALIFORNIA

Electro-optical Foveated Imaging and Tracking System

Conventional electro-optical imaging systems can not achieve wide field of view (FOV) and high spatial resolution imaging simultaneously due to format size limitations of image sensor arrays. To implement wide field of regard imaging with high resolution, mechanical scanning mechanisms are typically used. Still, sensor data processing and communication speed is constrained due to large amount of data if large format image sensor arrays are used. This invention describes an electro-optical imaging system that achieves wide FOV global imaging for suspect object detection and local high resolution for object recognition and tracking. It mimics foveated imaging property of human eyes. There is no mechanical scanning for changing the region of interest (ROI). Two relatively small format image sensor arrays are used to respectively acquire global low resolution image and local high resolution image. The ROI is detected and located by analysis of the global image. A lens array along with an electronically addressed switch array and a magnification lens is used to pick out and magnify the local image. The global image and local image are processed by the processor, and can be fused for display. Three embodiments of the invention are descried.
Owner:NEW SPAN OPTO TECH

Camera module

A camera module comprises a lens array including at least one lens, a lens accommodating unit having an inner space, in which the lens array is arranged, and an incident hole, and a housing mounted on a circuit board. The housing has a counter-engagement part engaged with an engagement part formed at the lens accommodating unit such that the lens accommodating unit is moved in the direction of the optical axis. An image sensor has an image area on which light is focused. The image sensor is electrically connected to the circuit board. A filter is disposed between the lens array and the image sensor. The filter includes a transparent medium through which light introduced along the optical axis is transmitted to the image area, and a prevention film for preventing electromagnetic waves generated by the image sensor from being emitted out of the housing.
Owner:SAMSUNG ELECTRO MECHANICS CO LTD

Time-sequential colour projection

InactiveUS7404644B2High efficiency of illuminationLight-efficiency is relatively highProjectorsPolarising elementsOptoelectronicsLight valve
A time-sequential colour projector comprises a pixellated light valve (2), such as a liquid crystal device, and a plurality of light sources (30, 31, 32). The light sources (30, 31, 32) direct light on different sets of pixels of the light valve (2) via an optical system (1), such as a lens array, which focuses the light on pixels of the light valve (2). At least two of the light sources (30, 31, 32) are multiple colour light sources and the multiple colour light sources emit different colour components during each set of frames making up a complete image frame.
Owner:SHARP KK

Photo detecting device and image pickup device and method thereon

A photo detecting device and method thereon capable of obtaining a color image without significant deterioration even in an optical system having a lens array. The photo detecting device includes a lens array having a plurality of lenses; and a photoelectric converter having a plurality of photoelectric conversion areas, each area comprising a plurality of pixels which generate electrical signals from light passing through a corresponding lens of the lens array and striking at least one of the plurality of pixels; wherein each of the areas has a first zone and a second zone, wherein the second zone has a spectrum sensitivity characteristic different from a spectrum sensitivity characteristic of the first zone.
Owner:SAMSUNG ELECTRONICS CO LTD

3D Display Device with Controllable Device for Tracking Visibility Regions

A 3D display device with controllable device for tracking visibility regions is disclosed, and includes a controllable device for tracking a visibility region, generated by way of superposition of light source images, in a observer plane of the display device. In preferred embodiments, the cladding of a waveguide comprises at least one material with optical properties of an anisotropic liquid, or at least two materials with optical properties of an isotropic liquid; a matrix arrangement of control electrodes defines multiple positions to be generated for local exit points in the cladding of the waveguide at which the total reflection is locally cancelled; and a system controller modifies positions of the output coupling points for superposing the output-coupled light through the lens array to the visibility region by displacing an output coupling point, or by switching off one output coupling point and switching on another one.
Owner:SEEREAL TECHNOLOGIES

Lighting system

The lighting system according to the present invention includes an electrical wiring substrate in which a connector to a power source is formed, a plurality of LED chips mounted in a predetermined array pattern on the electrical wiring substrate, a deflection lens array disposed in proximity to the LED chips between the LED chip and the predetermined illumination region and a housing for receiving the electrical wiring substrate and the deflection lens array. A plurality of deflection lenses are integrally molded in the deflection lens array to lead lights from the LED chips to the predetermined illumination region in a state where the lights from the LED chips are superposed with each other. The lights emitted from the LED chips are collected in a state where they all are superposed in a common, single illumination region through the deflection lenses.
Owner:YANCHERS CORP

Lens array with integrated folding mirror

A fiber optic transceiver incorporating a lens array with an integrated mirror and method of creating the same is disclosed. The transceiver includes the lens array and transceiver housing used to convert optical signals to electrical signals. The lens array includes a fiber side that can be connected to a fiber optic connector. The lens array also has a device side that can be connected to a photodetector. The lens array also includes a mirror that is positioned to transmit an optical signal received from the fiber side to the device side. Both the fiber side and the device include lenses used to provide focused transmission of optical signals. Accordingly, optical signals can be transmitted from a fiber optic connector to a photodetector in a compact and efficient manner at high bandwidths.
Owner:LOCKHEED MARTIN CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products