Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

277 results about "Intracranial pressure" patented technology

Intracranial pressure (ICP) is the pressure inside the skull and thus in the brain tissue and cerebrospinal fluid (CSF). ICP is measured in millimeters of mercury (mmHg) and, at rest, is normally 7–15 mmHg for a supine adult. The body has various mechanisms by which it keeps the ICP stable, with CSF pressures varying by about 1 mmHg in normal adults through shifts in production and absorption of CSF. Changes in ICP are attributed to volume changes in one or more of the constituents contained in the cranium. CSF pressure has been shown to be influenced by abrupt changes in intrathoracic pressure during coughing (intra-abdominal pressure), valsalva maneuver, and communication with the vasculature (venous and arterial systems).

Telemetry method and apparatus using magnetically-driven MEMS resonant structure

A telemetry method and apparatus using pressure sensing elements remotely located from associated pick-up, and processing units for the sensing and monitoring of pressure within an environment. This includes remote pressure sensing apparatus incorporating a magnetically-driven resonator being hermetically-sealed within an encapsulating shell or diaphragm and associated new method of sensing pressure. The resonant structure of the magnetically-driven resonator is suitable for measuring quantities convertible to changes in mechanical stress or mass. The resonant structure can be integrated into pressure sensors, adsorbed mass sensors, strain sensors, and the like. The apparatus and method provide information by utilizing, or listening for, the residence frequency of the oscillating resonator. The resonant structure listening frequencies of greatest interest are those at the mechanical structure's fundamental or harmonic resonant frequency. The apparatus is operable within a wide range of environments for remote one-time, random, periodic, or continuous/on-going monitoring of a particular fluid environment. Applications include biomedical applications such as measuring intraocular pressure, blood pressure, and intracranial pressure sensing.
Owner:LAUNCHPOINT TECH

Systems and methods for making non-invasive physiological assessments by detecting induced acoustic emissions

Systems and methods for assessing a physiological parameter of a target tissue wherein a pulse of focused ultrasound is applied to a target tissue site thereby inducing oscillation of the target tissue. By these systems and methods, a property of an acoustic signal emitted from the oscillating target tissue is measured and related to a physiological property of the tissue. Specific applications for systems and methods of the present invention include the assessment and monitoring of intracranial pressure (ICP), arterial blood pressure (ABP), CNS autoregulation status, vasospasm, stroke, local edema, infection and vasculitus, as well as diagnosis and monitoring of diseases and conditions that are characterized by physical changes in tissue properties.
Owner:PHYSIOSONICS +1

System for transcutaneous monitoring of intracranial pressure

A system for measuring and converting to an observer intelligible form an internal physiological parameter of a medical patient. The invention allows transcutaneous telemetry of the measured information intracranial pressure via a system which includes a patient implanted sensor module and a processing and display module which is external of the patient and optically coupled to the sensor module via an external coupling module. A sensor within the implanted module transduces the measured information and a near infrared (NIR) emitter transmits this telemetry information when interrogated by the complementary external coupling module. Alternately, a set of tuned inductor-crystal circuits versus inductor-crystal comprised in part of a cylindrical crystal oscillator whose resonant frequency is sensed by a dipper circuit arrangement is provided. Power for the sensor module is derived inductively through rectification of a transcutaneously-applied high-frequency alternating electromagnetic field which is generated by a power source within the external coupling module, in concept much like a conventional electrical transformer. A computer within the processing and display module calculates the parameter value from the telemetry signal and represents this data either in numerical, graphical, or analog format.
Owner:WOLF ERICH

Systems and methods for using dynamic vascular assessment to distinguish among vascular states and for investigating intracranial pressure

The invention relates to systems and methods for assessing blood flow in single or multiple vessels and segments, for assessing vascular health, for conducting clinical trials, for screening therapeutic interventions for effect, for assessing risk factors, for evaluating intracranial pressure and for analyzing the results in a defined manner. The invention enables direct monitoring of therapies, substances and devices on blood vessels, especially those of the cerebral vasculature. Relevant blood flow parameters include mean flow velocity, systolic acceleration, and pulsatility index. Measurement and analysis of these parameters, and others, provides details regarding the vascular health of individual and multiple vessels and a global analysis of an individual's overall vascular health. The invention can track the onset, progression and treatment efficacy in an individual experiencing increased intracranial pressure, or can help identify underlying vulnerabilities of the vascular system to normal pressures, associated with and manifested as hydrocphalus or dementia.
Owner:NEW HEALTH SCI

Statistical, Noninvasive Measurement of Intracranial Pressure

Tools and techniques for the rapid, continuous, invasive and / or noninvasive measurement, estimation, and / or prediction of a patient's intracranial pressure. In an aspect, some tools and techniques can predict the onset of conditions such as herniation and / or can recommend (and, in some cases, administer) a therapeutic treatment for the patient's condition. In another aspect, some techniques employ high speed software technology that enables active, long term learning from extremely large, continually changing datasets. In some cases, this technology utilizes feature extraction, state-of-the-art machine learning and / or statistical methods to autonomously build and apply relevant models in real-time.
Owner:UNIV OF COLORADO THE REGENTS OF
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products