Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

110results about How to "Maximize signal to noise ratio" patented technology

Robotically assisted medical ultrasound

A system for medical ultrasound in which the ultrasound probe is positioned by a robot arm under the shared control of the ultrasound operator and the computer is proposed. The system comprises a robot arm design suitable for diagnostic ultrasound, a passive or active hand-controller, and a computer system to co-ordinate the motion and forces of the robot and hand-controller as a function of operator input, sensed parameters and ultrasound images.
Owner:THE UNIV OF BRITISH COLUMBIA

Maximal ratio combining of equalized symbols for MIMO systems with HARQ and/or repetition coding

Systems and methods are provided for decoding signal vectors in multiple-input multiple-output (MIMO) systems, where the receiver has received one or more signal vectors based on the same transmitted vector. The receiver linearizes each received signal vector using one or more zero-forcing, MMSE, or other suitable linear equalizers. The components of the equalized signal vectors may be combined using maximum-ratio combining to form the components of a combined equalized signal vector. The components of the combined equalized signal vector may then be decoded individually using a linear decoder.
Owner:NXP USA INC

Symbol-level combining for MIMO systems with HARQ and/or repetition coding

ActiveUS20080025443A1Reduced system complexityWhiten noiseSpatial transmit diversityModulated-carrier systemsMimo systemsCritical path method
Systems and methods are provided for decoding signal vectors in multiple-input multiple-output (MIMO) systems, where the receiver has received one or more signal vectors from the same transmitted vector. The symbols of the received signal vectors are combined, forming a combined received signal vector that may be treated as a single received signal vector. The combined signal vector is then decoded using a maximum-likelihood decoder. In some embodiments, the combined received signal vector may be processed prior to decoding. Systems and methods are also provided for computing soft information from a combined signal vector based on a decoding metric. Computationally intensive calculations can be extracted from the critical path and implemented in preprocessors and / or postprocessors.
Owner:NXP USA INC

Multi-touch panel capacitance sensing circuit

Disclosed herein is a multi-touch panel capacitance sensing circuit. The multi-touch panel capacitance sensing circuit includes a touch panel, a transmission circuit unit, and a reception circuit unit. The touch panel includes transmission electrodes and reception electrodes. The transmission circuit unit applies a transmission signal, having a predetermined period, to the transmission electrodes in a time division manner. The reception circuit unit for detecting a difference in capacitance components, generated between the transmission electrode and the reception electrode, based on the reception electrode when a touch is generated by the human body of a user. The reception circuit unit includes a current mirror-based charge integration circuit, and detects whether a touch is generated or not.
Owner:POINTCHIPS CO LTD

Iterative interference canceller for wireless multiple-access systems employing closed loop transmit diversity

An interference-canceling receiver processes coded, multiple-access, spread-spectrum transmissions that propagate through frequency-selective communication channels from multiple transmit antennas to multiple receive antennas in a closed-loop transmit-diversity channel. The receiver provides for repeated use of symbol-estimate weighting, subtractive cancellation with a stabilizing step-size, and mixed-decision symbol estimation. Receivers may be designed, adapted, and implemented explicitly in software or programmed hardware, or implicitly in standard Rake-based hardware, either within a Rake receiver at the finger level or outside the Rake at the user or subchannel symbol level. The receiver may be employed in user equipment on the forward link or in a base station on the reverse link.
Owner:III HLDG 1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products