Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

7002 results about "Plasma processing" patented technology

Plasma processing is a plasma-based material processing technology that aims at modifying the chemical and physical properties of a surface.

Plasma uniformity control by gas diffuser curvature

Embodiments of a gas distribution plate for distributing gas in a processing chamber are provided. In one embodiment, a gas distribution assembly for a plasma processing chamber comprises a diffuser plate with gas passages passing between its upstream and downstream sides and hollow cathode cavities at the downstream side of the gas passages. The downstream side of the diffuser plate has a curvature to improve the thickness uniformity and film property uniformity of thin films deposited by PECVD, particularly SiN and amorphous silicon films. The curvature is preferably described by an arc of a circle or ellipse, the apex thereof located at the center point of the diffuser plate. In one aspect, the hollow cathode cavity volume density, surface area density, or the cavity density of the diffuser increases from the center of the diffuser to the outer edge. Methods for manufacturing such a diffuser plate are also provided.
Owner:APPLIED MATERIALS INC

Remote Plasma Source for Pre-Treatment of Substrates Prior to Deposition

A plasma processing chamber particularly useful for pre-treating low-k dielectric films and refractory metal films subject to oxidation prior to deposition of other layers. A remote plasma source (RPS) excites a processing gas into a plasma and delivers it through a supply tube to a manifold in back of a showerhead faceplate. The chamber is configured for oxidizing and reducing plasmas in the same or different processes when oxygen and hydrogen are selectively supplied to the RPS. The supply tube and showerhead may be formed of dielectric oxides which may be passivated by a water vapor plasma from the remote plasma source. In one novel process, a protective hydroxide coating is formed on refractory metals by alternating neutral plasmas of hydrogen and oxygen.
Owner:APPLIED MATERIALS INC

Method of and apparatus for tunable gas injection in a plasma processing system

A method of and apparatus for providing tunable gas injection in a plasma processing system (10, 10′). The apparatus includes a gas injection manifold (50) having a pressurizable plenum (150) and an array of adjustable nozzle units (250), or an array of non-adjustable nozzles (502, 602), through which gas from the plenum can flow into the interior region (40) of a plasma reactor chamber (14) capable of containing a plasma (41). The adjustable nozzle units include a nozzle plug (160) arranged within a nozzle bore (166). A variety of different nozzle units are disclosed. The nozzle plugs are axially translatable to adjust the flow of gas therethrough. In one embodiment, the nozzle plugs are attached to a plug plate (154), which is displacable relative to an injection plate (124) via displacement actuators (170) connecting the two plates. The displacement actuators are controlled by a displacement actuator control unit (180), which is in electronic communication with a plasma processing system control unit (80). The gas flow into the chamber interior region is preferably controlled by monitoring the pressure in the plenum and in the chamber and adjusting the nozzle units accordingly. Where the nozzle units are not adjustable, a portion of the nozzles are sized to a first flow condition, and another portion of the nozzles are sized to a second flow condition.
Owner:TOKYO ELECTRON LTD

Method and apparatus for pulsed plasma processing using a time resolved tuning scheme for RF power delivery

Embodiments of the present invention generally provide methods and apparatus for pulsed plasma processing over a wide process window. In some embodiments, an apparatus may include an RF power supply having frequency tuning and a matching network coupled to the RF power supply that share a common sensor for reading reflected RF power reflected back to the RF power supply. In some embodiments, an apparatus may include an RF power supply having frequency tuning and a matching network coupled to the RF power supply that share a common sensor for reading reflected RF power reflected back to the RF power supply and a common controller for tuning each of the RF power supply and the matching network.
Owner:APPLIED MATERIALS INC

Method of cleaning etching apparatus

ActiveUS20060191555A1Clean interiorMaintain repeatabilityHollow article cleaningElectrostatic cleaningBoron trichlorideOxygen
To provide a cleaning method for an etching apparatus for a metal film that efficiently removes an etching residue deposited in an etching process chamber, assures the reproducibility of the etching performance, and keeps the etching process chamber in a low-dust-emission condition. Each time one workpiece with a metal film is etched (S1), the interior of the vacuum chamber is cleaned by replacing the workpiece with a dummy substrate (S2), performing a first step of plasma processing using oxygen (O2) and carbon tetrafluoride (CF4) to remove a carbon-based deposit pile (S3), and performing a second step of plasma processing using boron trichloride (BCl3) and chlorine (Cl2) to remove a residue that could not be removed by the first step and an etching residue of the metal film (S4).
Owner:HITACHI HIGH-TECH CORP

Shower head and plasma processing apparatus having same

A shower head is provided, in a processing chamber in which a substrate is processed, to face a mounting table for mounting the substrate thereon. The shower head includes: a facing surface that faces the mounting table to supply a gas to the substrate in a form of shower through a plurality of gas injection holes formed on the facing surface; an opposing surface provided opposite to the facing surface; and a plurality of bar-shaped heat transfer columns standing on the opposing surface. Here, the heat transfer columns have varying lengths and / or thicknesses to adjust heat capacities thereof. The heat transfer columns are made of one of aluminum, stainless steel, and copper.
Owner:TOKYO ELECTRON LTD

Replaceable upper chamber parts of plasma processing apparatus

An upper chamber section of a plasma reaction chamber includes a ceramic window with blind bores in an upper surface for receipt of a thermal couple and a resistance temperature detector, a top chamber interface which comprises an upper surface which vacuum seals against the bottom of the window and a gas injection system comprising 8 side injectors mounted in the sidewall of the top chamber interface and a gas delivery system comprising tubing which provides symmetric gas flow to the 8 injectors from a single gas feed connection.
Owner:LAM RES CORP

Sealing pores of low-k dielectrics using CxHy

A semiconductor method of manufacturing involving porous and / or carbon containing, low-k dielectrics is provided. The method includes forming a hydrocarbon of the general composition CxHy on the surface of the low-k dielectric. The hydrocarbon layer includes depositing a precursor material, preferably C2H4 or (CH3)2CHC6H6CH3. In accordance with embodiments of this invention, carbon diffuses into the low-k dielectric, thereby reducing carbon depletion damage caused by plasma processing or etching. Surface dielectric pores damaged by plasma processing are also repaired by sealing them with the CXHY layer. Embodiments include semiconductor devices, such as devices having damascene interconnect structures, manufacturing using methods provided.
Owner:TAIWAN SEMICON MFG CO LTD

Manufacturing method of top plate of plasma processing apparatus

A manufacturing method of a top plate hermetically attached to an upper opening of a tubular shaped container body for forming a processing container of a plasma processing apparatus is provided. The manufacturing method includes the steps of; preparing a top plate body comprised of a dielectric body for transmitting an electromagnetic wave, and having a gas ejection hole for ejecting a gas into the processing container; forming a discharge prevention member having a discharge prevention member body comprised of a dielectric body having a permeability, and a dense member comprised of a dielectric body without a permeability covering at least a side face of the discharge prevention member body; and attaching the discharge prevention member in the gas ejection hole of the top plate body.
Owner:TOKYO ELECTRON LTD

Mixed mode pulsing etching in plasma processing systems

A method for processing substrate in a chamber, which has at least one plasma generating source, a reactive gas source for providing reactive gas into the interior region of the chamber, and a non-reactive gas source for providing non-reactive gas into the interior region, is provided. The method includes performing a mixed-mode pulsing (MMP) preparation phase, including flowing reactive gas into the interior region and forming a first plasma to process the substrate that is disposed on a work piece holder. The method further includes performing a MMP reactive phase, including flowing at least non-reactive gas into the interior region, and forming a second plasma to process the substrate, the second plasma is formed with a reactive gas flow during the MMP reactive phase that is less than a reactive gas flow during the MMP preparation phase. Perform the method steps a plurality of times.
Owner:LAM RES CORP

Plasma processing apparatus

The invention provides a plasma processing apparatus in which ring-like conductors 8a and 8b are arranged closed to and along an induction antenna 1 composed of an inner circumference coil 1a and an outer circumference coil 1b. Ring-like conductors 8a and 8b are each characterized in that the radius from the center of the apparatus and the cross-sectional shape of the conductor body varies along the circumferential angle of the coils. Since the mutual inductances between the ring-like conductors 8a and 8b and the induction antenna 1 and between the ring-like conductors 8a and 8b and the plasma along the circumferential position are controlled, it becomes possible to compensate for the coil currents varied along the circumference of the coils of the induction antenna 1, and to improve the non-uniformity in the circumferential direction of the current in the generated plasma.
Owner:HITACHI HIGH-TECH CORP

Shower head and plasma processing apparatus having same

A shower head is provided, in a processing chamber in which a substrate is processed, to face a mounting table for mounting the substrate thereon. The shower head includes: a facing surface that faces the mounting table to supply a gas to the substrate in a form of shower through a plurality of gas injection holes formed on the facing surface; an opposing surface provided opposite to the facing surface; and a plurality of bar-shaped heat transfer columns standing on the opposing surface. Here, the heat transfer columns have varying lengths and / or thicknesses to adjust heat capacities thereof. The heat transfer columns are made of one of aluminum, stainless steel, and copper.
Owner:TOKYO ELECTRON LTD

Shower plate for plasma processing apparatus and plasma processing apparatus

There is disclosed a shower plate 1, wherein the shower plate has a plurality of holes 3 for inserting the head of the fastening member and holes 4 for fitting the head are formed integrally along a concentric circle in the outside region of the gas feeding holes 2 on a side facing the supporting member, each hole for fitting extending in one direction of the concentric circle from each hole for insertion, each hole for fitting has a groove portion 4b through which the shank of the fastening member is to pass and a fitting portion 4a which is wider than the groove portion and in which the head of the fastening member is to be fitted, and the head of the fastening member fixed in the supporting member is inserted into the hole for insertion of the shower plate and the shower plate is turned so that the head of the fastening member is fitted in the fitting portion, and thereby the shower plate is supported by the supporting member without exposure of the fastening member. There can be provided a shower plate for a plasma processing apparatus, wherein effective diameter is large enough, contamination of a substrate to be treated can be prevented, it is easy to manufacture, and it is easy to fix to a supporting member.
Owner:SHIN ETSU CHEM IND CO LTD

Plasma processing apparatus and plasma processing method

Substrates are contained in substrate containing holes which penetrate a tray in the thickness direction. A dielectric plate in a chamber is provided with a tray supporting surface which supports the lower surface of the tray and substrate placing sections which protrude upward, and has an electrostatic chuck electrode therein. The substrate supporting section which supports the substrate contained in the substrate containing holes is provided with a plurality of protruding sections formed at intervals in the circumferential direction of the substrate containing holes. The substrates are supported in point-contact mode by means of the protruding sections.
Owner:PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO LTD

Methods for in-situ chamber dry clean in photomask plasma etching processing chamber

Embodiments of the invention include methods for in-situ chamber dry cleaning a plasma processing chamber utilized for photomask plasma fabrication process. In one embodiment, a method for in-situ chamber dry clean after photomask plasma etching includes performing an in-situ pre-cleaning process in a plasma processing chamber, supplying a pre-cleaning gas mixture including at least an oxygen containing gas into the plasma processing chamber while performing the in-situ pre-cleaning process, providing a substrate into the plasma processing chamber, performing an etching process on the substrate, removing the substrate from the substrate, and performing an in-situ post cleaning process by flowing a post cleaning gas mixture including at least an oxygen containing gas into the plasma processing chamber.
Owner:APPLIED MATERIALS INC

Film-forming method, method of manufacturing semiconductor device, semiconductor device, method of manufacturing display device, and display device

Disclosed is a film-forming method, comprising supplying into a plasma processing chamber at least three kinds of gases including a silicon compound gas, an oxidizing gas, and a rare gas, the percentage of the partial pressure of the rare gas (Pr) based on the total pressure being not smaller than 85%, i.e., 85%≦Pr<100%, and generating a plasma within the plasma processing chamber so as to form a film of silicon oxide on a substrate to be processed.
Owner:ADVANCED LCD TECH DEVMENT CENT

Substrate processing apparatus and substrate processing method

A substrate processing apparatus that enables a state of plasma over a substrate to be maintained in a desired state easily. A plasma processing apparatus 10 that has therein a camber 11, a stage 12, and a processing gas introducing nozzle 38 carries out etching on a wafer W. The chamber 11 houses the wafer W. The stage 12 is disposed in the chamber 11 and the wafer W is mounted thereon. The processing gas introducing nozzle 38 is a projecting body that projects out into the chamber 11, and has therein a plurality of processing gas introducing holes 56 that open out in different directions to one another.
Owner:TOKYO ELECTRON LTD

Using polydentate ligands for sealing pores in low-k dielectrics

In preferred embodiments, a polydentate pore-sealing ligand is used to seal or repair pores damaged by plasma processing. The polydentate ligand includes bidentate ligands corresponding to the general formula X—CH2—(CH2)n—CH2—X or X—Si(CH3)2—(CH2)n—Si(CH3)2—X. The polydentate ligand also includes tridendate ligands corresponding to the general formula X—CH2—(CH2)m(CXH)(CH2)o—CH2—X or X—Si(CH3)2—(CH2)m(CXH)(CH2)o—Si(CH3)2—X. Alternative embodiments may include single or multiply branched polydentate ligands. Other embodiments include ligands that are cross-linked after attachment to the dielectric. Still other embodiments include a derivatization reaction wherein silanol groups formed by plasma damage are removed and favorable dielectric properties are restored.
Owner:INFINEON TECH AG

Method and apparatus of distributed plasma processing system for conformal ion stimulated nanoscale deposition process

A deposition system and method of operating thereof is described for depositing a conformal metal or other similarly responsive coating material film in a high aspect ratio feature using a high density plasma is described. The deposition system includes a plasma source, and a distributed metal source for forming plasma and introducing metal vapor to the deposition system, respectively. The deposition system is configured to form a plasma having a plasma density and generate metal vapor having a metal density, wherein the ratio of the metal density to the plasma density proximate the substrate is less than or equal to unity. This ratio should exist at least within a distance from the surface of the substrate that is about twenty percent of the diameter of the substrate. A ratio that is uniform within plus or minus twenty-five percent substantially across the surface of said substrate is desirable. The ratio is particularly effective for plasma density exceeding 1012 cm−3, and for depositing film on substrates having nanoscale features with maximum film thickness less than half of the feature width, for example, at ten percent of the feature width.
Owner:TOKYO ELECTRON LTD

Plasma processing member, deposition apparatus including the same, and depositing method using the same

A deposition apparatus according to an exemplary embodiment of the present invention includes a plurality of reaction spaces, a plurality of plasma electrodes respectively disposed in the reaction spaces, a first plasma processor connected to at least two plasma electrodes, and a first plasma power source connected to the first plasma processor. The first plasma processor may include a plasma distributor or a plasma splitter.
Owner:ASM KOREA LTD

Plasma processing apparatus

In a plasma processing apparatus for processing a substrate by plasmatizing a process gas introduced into a processing container, an introducing unit which introduces the process gas is formed on a ceiling surface of the processing container; a gas retention portion which gathers the process gas supplied from the outside of the processing container through a supply passage, and a plurality of gas ejection holes which allow communication between the gas retention portion and the inside of the processing container are formed in the introducing unit; a gas ejection hole is not formed in a location of the gas retention portion that faces an opening of the supply passage; and a cross section of each of the gas ejection holes has a flat shape.
Owner:TOKYO ELECTRON LTD

Plasma processing method and film forming method

A plasma processing method of carrying out curing processing on a low dielectric constant film produced on a to-be-processed substrate by applying plasma thereto in a processing chamber of a plasma processing apparatus, includes the steps of: a) introducing, in the plasma processing chamber, a first gas having a function of stabilizing plasma and a second gas generating active hydrogen, and, after that; b) generating plasma, and carrying out curing processing on the low dielectric constant film.
Owner:TOKYO ELECTRON LTD

Plasma processing apparatus, plasma processing method, and tray

A tray 15 for a dry etching apparatus 1 has substrate accommodation holes 19A to 19D penetrating thickness direction and a substrate support portion 21 supporting an outer peripheral edge portion of a lower surface 2a of a substrate 2. A dielectric plate 23 has a tray support surface 28 supporting a lower surface of the tray 15, substrate placement portions 29A through 29D inserted from a lower surface side of the tray 15 into the substrate accommodation holes 19A through 19D and having a substrate placement surface 31 at its upper end surface for placing the substrate 2. A dc voltage applying mechanism 43 applies a dc voltage to an electrostatic attraction electrode 40. A heat conduction gas supply mechanism 45 supplies a heat conduction gas between the substrate 2 and substrate placement surface 31. The substrate 2 can be retained on the substrate placement surface 31 with high degree of adhesion. This results in that the cooling efficiency of the substrate 2 is improved and processing is uniformed at the entire region of the substrate surface including the vicinity of the outer peripheral edge.
Owner:PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO LTD

High productivity plasma processing chamber

Embodiments of the present invention are generally directed to apparatus and methods for a plasma-processing chamber requiring less maintenance and downtime and possessing improved reliability over the prior art. In one embodiment, the apparatus includes a substrate support resting on a ceramic shaft, an inner shaft allowing for electrical connections to the substrate support at atmospheric pressure, an aluminum substrate support resting on but not fixed to a ceramic support structure, sapphire rest points swaged into the substrate support, and a heating element inside the substrate support arranged in an Archimedes spiral to reduce warping of the substrate support and to increase its lifetime. Methods include increasing time between in-situ cleans of the chamber by reducing particle generation from chamber surfaces. Reduced particle generation occurs via temperature control of chamber components and pressurization of non-processing regions of the chamber relative to the processing region with a purge gas.
Owner:APPLIED MATERIALS INC

Plasma processing system

A processing system having a processing chamber that includes a substrate holder and an electrode. The processing system can include a pressure control system, gas supply system, and monitoring system. A multi-frequency RF source is coupled to the electrode using a reduced-element matching network having a single variable element. The multi-frequency RF source is set to a first frequency to ignite a plasma and to a second frequency to maintain the plasma.
Owner:TOKYO ELECTRON LTD +1

Substrate supporting table, method for producing same, and processing system

A plasma processing system has a susceptor, provided in a processing vessel, for supporting thereon a substrate. A process gas is supplied into the processing vessel to produce the plasma of the process gas. The susceptor has a dielectric film formed on a base, and a plurality of protrusions formed on the film. The protrusions of the susceptor are formed by thermal-spraying a ceramic onto the dielectric film via an aperture plate having a plurality of circular apertures.
Owner:USHIODA JOICHI +3

Plasma processing apparatus and method

An apparatus includes an upper electrode and a lower electrode for supporting a wafer disposed opposite each other within a process chamber. A first RF power supply configured to apply a first RF power having a relatively higher frequency, and a second RF power supply configured to apply a second RF power having a relatively lower frequency is connected to the lower electrode. A variable DC power supply is connected to the upper electrode. A process gas is supplied into the process chamber to generate plasma of the process gas so as to perform plasma etching.
Owner:TOKYO ELECTRON LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products