Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

26571 results about "Heat transfer" patented technology

Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.

Electrosurgical instrument

A working end of a surgical instrument that carries first and second jaws for delivering energy to tissue. In a preferred embodiment, at least one jaw of the working end defines a tissue-engagement plane that contacts the targeted tissue. The cross-section of the engagement plane reveals that it defines (i) a first surface conductive portion or a variably resistive matrix of a temperature-sensitive resistive material or a pressure-sensitive resistive material, and (ii) a second surface portion coupled to a fixed resistive material that coupled in series or parallel to a voltage source together with the first portion. In use, the engagement plane will apply active Rf energy to ohmically heat the captured tissue until the point in time that a controller senses an electrical parameter of the tissue such as impedance. Thereafter, the controller switches energy delivery to the second surface portion that is resistively heated to thereby apply energy to tissue by conductive heat transfer.
Owner:ETHICON ENDO SURGERY INC

Gas treatment device and heat readiting method

A shower head formed by stacking a shower base, a gas diffusion plate, and a shower plate and supplying material gas and oxidizer gas to a wafer on a loading table through a first gas diffusion part and a second gas diffusion part formed in both faces of the gas diffusion plate, first gas outlets formed in the shower plate and communicating with a first gas diffusion space, and second gas outlets formed in the shower plate and communicating with a second gas diffusion space. A plurality of heat transfer columns fitted closely to the lower surface of the shower base are installed in the first gas diffusion part so that portions therebetween can form the first gas diffusion space, and radiant heat from the loading table is transmitted by the heat transfer columns in the thickness direction of the shower head.
Owner:TOKYO ELECTRON LTD

Cast pedestal with heating element and coaxial heat exchanger

The present invention provides a heat transfer assembly that, when coupled to an object, is capable of keeping the object at a uniform elevated temperature while removing large amounts of heat from an external source. The assembly may be contained in a pedestal for use in a UV-cure chamber. The heat transfer assembly includes a heating element to control the wafer temperature and a cooling element to remove incident IR heat from the wafer and pedestal. A heat resistant layer having a calibrated heat resistance is located between the heating and cooling elements and between the wafer and the cooling elements. The heat resistant layer is able to sustain high temperature gradient from the wafer to the coolant so that the coolant does not boil while permitting enough heat to be conducted away from the wafer to maintain the desired set-point temperature.
Owner:NOVELLUS SYSTEMS

Ampoule with a thermally conductive coating

Embodiments of the invention provide an apparatus and a process for generating a chemical precursor used in a vapor deposition processing system. The apparatus includes a canister (e.g., ampoule) having a sidewall, a top, and a bottom encompassing an interior volume therein, inlet and outlet ports in fluid communication with the interior volume, and a thermally conductive coating disposed on or over the outside surface of the canister. The thermally conductive coating is more thermally conductive than the outside surface of the canister. The thermally conductive coating may contain aluminum, aluminum nitride, copper, brass, silver, titanium, silicon nitride, or alloys thereof. In some embodiments, an adhesion layer (e.g., titanium or tantalum) may be disposed between the outside surface of the canister and the thermally conductive coating. In other embodiments, the canister may contain a plurality of baffles or solid heat-transfer particles to help evenly heat a solid precursor therein.
Owner:APPLIED MATERIALS INC

Shower head and plasma processing apparatus having same

A shower head is provided, in a processing chamber in which a substrate is processed, to face a mounting table for mounting the substrate thereon. The shower head includes: a facing surface that faces the mounting table to supply a gas to the substrate in a form of shower through a plurality of gas injection holes formed on the facing surface; an opposing surface provided opposite to the facing surface; and a plurality of bar-shaped heat transfer columns standing on the opposing surface. Here, the heat transfer columns have varying lengths and / or thicknesses to adjust heat capacities thereof. The heat transfer columns are made of one of aluminum, stainless steel, and copper.
Owner:TOKYO ELECTRON LTD

Showerhead mounting to accommodate thermal expansion

InactiveUS20050183827A1Minimize and eliminate distortionGreat thermal expansion coefficientElectric discharge tubesSemiconductor/solid-state device manufacturingEngineeringThermal expansion
Methods and apparatus for accommodating thermal expansion of a showerhead. In a first aspect of the invention, the showerhead is movably supported by resting a rim of the showerhead on a support shelf. In a second aspect, the showerhead is suspended from the chamber wall by a plurality of hangers that are connected to the showerhead, the chamber wall, or both by pins that slide within slots so as to permit the hangers to slide radially to accommodate thermal expansion of the showerhead in the radial direction. In a third aspect, the showerhead is suspended from the wall of the vacuum chamber by a plurality of rods or flexible wires. In a fourth aspect, the showerhead is connected near its perimeter to a second material having a greater thermal expansion coefficient than the showerhead. In a fifth aspect, a heater is mounted behind the showerhead to reduce the termperature differential between the top and bottom surfaces of the showerhead or to reduce heat transfer from the workpiece to the showerhead.
Owner:APPLIED MATERIALS INC

Shower head and plasma processing apparatus having same

A shower head is provided, in a processing chamber in which a substrate is processed, to face a mounting table for mounting the substrate thereon. The shower head includes: a facing surface that faces the mounting table to supply a gas to the substrate in a form of shower through a plurality of gas injection holes formed on the facing surface; an opposing surface provided opposite to the facing surface; and a plurality of bar-shaped heat transfer columns standing on the opposing surface. Here, the heat transfer columns have varying lengths and / or thicknesses to adjust heat capacities thereof. The heat transfer columns are made of one of aluminum, stainless steel, and copper.
Owner:TOKYO ELECTRON LTD

Processing apparatus

A shower head structure (26) includes a shower head main body (78) of a one-piece structure formed in a generally cup shape and having a bottom wall (78A) provided with a plurality of gas injection holes (30A, 30B) formed therein and a side wall (78B) rising from a peripheral portion of the bottom wall. A plurality of gas diffusion chamber forming plates (82A-82C) are housed in the shower head main body (78). A through-hole is formed in a head mounting frame (76) disposed on a ceiling of a processing vessel (24). An upper portion of the side wall (78B) of the shower head main body (78) is inserted into the through-hole, so that a part of the side wall (78B) is exposed to the exterior of the processing vessel. A cooling mechanism (84) is disposed at the upper end portion of the side wall (78B). Heat transfer between the cooling mechanism (84) and the bottom wall (78A) is enhanced, so that the temperature of the bottom wall (78A) can be controlled at a proper value, thereby preventing any adhesion of an unnecessary film onto the bottom wall (78A).
Owner:TOKYO ELECTRON LTD

Technique for using heat flow management to treat brain disorders

A method of treating a brain disorder by heat transfer from brain tissue comprising the steps of surgically cutting a heat transfer aperture into a patient's skull, thereby exposing a predetermined portion of patient's brain; surgically implanting into said heat transfer aperture a heat pump having one or more electrical sensor elements and one or more temperature sensor elements; surgically implanting a heat transfer management unit in a body cavity of said patient such that a micro controller of the heat transfer management unit is connected to one or more activity sensor elements and one or more temperature sensor elements contacting brain tissue and connecting the heat transfer management unit to said heat pump via a lead bundle. Optionally, the heat transfer unit may be located external to the patient's body. Responsive to signals from one or more activity or temperature sensor elements, mathematical algorithms of the heat transfer management unit determine abnormal brain activity, causing the heat pump to remove heat from the brain tissue into a heat sink, thereby cooling the predetermined portion of the patient's brain. This technique utilizes acute hypothermia by means of a Peltier cooler or similar device to cool the brain temperature to reduce or prevent seizure initiation and / or propagation. The method may be used in association with brain stimulation and / or drug application to acutely avoid the occurrence of a seizure episode.
Owner:THE JOHN HOPKINS UNIV SCHOOL OF MEDICINE

Solar concentrator for heat and electricity

PCT No. PCT / NZ95 / 00084 Sec. 371 Date Feb. 28, 1997 Sec. 102(e) Date Feb. 28, 1997 PCT Filed Sep. 14, 1995 PCT Pub. No. WO96 / 08683 PCT Pub. Date Mar. 21, 1996A solar concentrator for producing usable power as heat and / or electricity uses a self-steering heliostat 1502 to concentrate solar radiation 1509 onto an absorbing surface such as, or including, a solar cell array 1511 capable of absorbing power from the radiation, meanwhile removing heat (such as from long-wave infra-red radiation or resistive losses) from the surface with fluid heat transfer means 1503, 1504, then making effective use of that low-grade heat. Thus the solar cell array is kept relatively cool and a larger proportion of the solar energy incident on the reflector unit is used. The invention uses electricity 1506 from the solar cells to move a transporting fluid through a heat exchanger 1504. Excess electricity may be available for local storage or use 1510, or feeding 1512 to the power distribution grid. Applications include warming swimming pools 1501, heating hot-water supplies using excess electricity, or warming, lighting and ventilating open spaces.
Owner:JOHNSON COLIN FRANCIS

Apparatus and methods for altering temperature in a region within the body

InactiveUS20070225781A1Kinking undesirableMinimize any undesirable heat transferSurgeryTherapeutic coolingControl electronicsMedicine
Apparatus and methods for cooling and / or heating selected regions within a body are described herein. An implantable system is used to cool or heat nerve bodies down to about 15° C. to diminish nerve impulses. In one embodiment, the system can include an implantable unit containing a pumping mechanism and / or various control electronics. The system has a cooling element. The cooling element can be a Peltier junction or a catheter through which hot or cold fluid flows. The heated portion of the Peltier junction can be cooled by a liquid heat transfer medium which absorbs the heat from the junction and dissipates the heat elsewhere.
Owner:NIDUS MEDICAL

Catheter with coiled multi-lumen heat transfer extension

A catheter includes a sealed multi-lumen heat transfer extension designed to internally circulate a coolant, and thereby cool tissue or fluid surrounding the catheter. The heat transfer extension includes a tube having a distally positioned region that coils about the tube's longitudinal axis. The tube houses multiple lumens running longitudinally along the tube. These lumens include one or more supply lumens and one or more return lumens. A distal fluid exchange reservoir resides at the tube's tip, for the purpose of redirecting fluid from the supply lumen(s) to the return lumen(s). The heat transfer extension may include a shape memory structure causing the heat transfer extension to vary its shape according to temperature. Namely, the extension assumes a coiled shape under predetermined shape-active temperatures, and it assumes a non-coiled shape under other predetermined shape-relaxed temperatures. The catheter also includes an interface having supply and return lines to provide coolant to the heat transfer extension, and remove coolant returning therefrom. To connect the supply / return lines with the supply / return lumens, the invention may include a fluid transfer housing. Optionally, one or more of the lumens may be configured as flow-through lumens to exchange fluids with the patient.
Owner:ZOLL CIRCULATION

Method and apparatus for location and temperature specific drug action such as thrombolysis

A method is provided of localizing a drug action where the drug is present throughout a vascular system. The localization occurs to within a volume of blood in a blood vessel, the vascular system having an initial temperature substantially within a first temperature range. A temperature-specific enzyme is delivered throughout a vascular system including a volume of blood in a blood vessel, the temperature-specific enzyme having a working temperature within a prespecified temperature range that does not substantially overlap the first temperature range. A heat transfer element is delivered to a blood vessel in fluid communication with the volume of blood. The temperature of the heat transfer element is adjusted such that the volume of blood in the blood vessel is heated or cooled to the prespecified temperature range. In this way, the action of the temperature-specific enzyme is substantially limited to the volume of blood heated or cooled. In an alternative embodiment, the temperature-specific enzyme is localized to the volume of blood in the blood vessel, and the heat transfer element is disposed in fluid communication with the volume of blood in the blood vessel. The enzyme localization may occur by way of direct injection or by way of injection through a lumen of a catheter. The injection lumen of the catheter may be disposed at least partially adjacent or in combination with the heat transfer element and its associated inlet and outlet lumens.
Owner:ZOLL CIRCULATION

Thermally contained/insulated phase change memory device and method (combined)

A memory device with improved heat transfer characteristics. The device first includes a dielectric material layer; first and second electrodes, vertically separated and having mutually opposed contact surfaces. A phase change memory element is encased within the dielectric material layer, including a phase-change layer positioned between and in electrical contact with the electrodes, wherein the lateral extent of the phase change layer is less than the lateral extent of the electrodes. An isolation material is positioned between the phase change layer and the dielectric layer, wherein the thermal conductivity of the isolation material is lower than the thermal conductivity of the dielectric material.
Owner:MACRONIX INT CO LTD

Nanotube/metal substrate composites and methods for producing such composites

Carbon nanotubes are grown directly on metal substrates using chemical vapor deposition. Metal substrates are comprised of catalysts which facilitate or promote the growth of carbon nanotubes. The nanotube coated metal substrates have applications including, but not limited to, heat transfer and thermal control, hydrogen storage, fuel cell catalytic reformers, electronics and semiconductors, implantable medical devices or prostheses, and tribological wear and protective coatings.
Owner:MAINSTREAM ENG

Enhanced wafer carrier

A wafer carrier used in wafer treatments such as chemical vapor deposition has pockets for holding the wafers and support surfaces for supporting the wafers above the floors of the pockets. The carrier is provided with locks for restraining wafers against upward movement away from the support surfaces. Constraining the wafers against upward movement limits the effect of wafer distortion on the spacing between the wafer and the floor surfaces, and thus limits the effects of wafer distortion on heat transfer. The carrier may include a main portion and minor portions having higher thermal conductivity than the main portion, the minor portions being disposed below the pockets.
Owner:VEECO INSTR

Method for leak detection in heat transfer systems

Disclosed is a method for detecting a leak in a closed loop heat transfer system comprising monitoring the pressure of the heat transfer composition inside said heat transfer system, wherein a drop in pressure indicates a leak. Also disclosed is a heat transfer system comprising an evaporator, a compressor, a condenser, an expander and a device for measuring internal system pressure. The system pressure measuring device is disposed inside the closed loop heat system. The internal system pressure measuring means may be located either between the evaporator and the condenser, between the expander and the evaporator, between the compressor and the condenser, or between the condenser and the expander.
Owner:EI DU PONT DE NEMOURS & CO

Method and apparatus for controlling cooling and heating fluids for a gas distribution plate

The invention provides an apparatus and a method of regulating temperature of a component of a processing chamber comprising providing a thermal conductor thermally connected to the component, providing a controller connected to the thermal conductor, providing at least one temperature sensor connected to the component to supply temperature readings to the controller and regulating heat transfer between the component and the thermal conductor by changing the temperature of the thermal conductor. The invention also provides an apparatus and a method for providing a thermal gradient in a chamber component comprising providing a first thermal conductor at a first temperature attached to the component and providing a second thermal conductor at a second temperature attached to the component.
Owner:APPLIED MATERIALS INC

Devices and Methods for Treatment of Skin Conditions

Devices and methods for the treatment of skin conditions and lesions are disclosed herein. A compact hand held device that can be safely used by those suffering from skin conditions, such as acne, warts, cold blisters, blemished skin, or fine wrinkles. The devices employ the application of ultrasound energy and heat for the treatment of skin conditions and lesions. Typically, the peak temperatures employed are about 40° C. to about 70° C. by the devices, are achieved in less than about 20 second, and maintained for less than about 40 second. Ultrasound absorption and thermal conduction transfers heat from the device to the skin and causes a biological response that accelerates acne clearing, treats blemished skin, itching, or fine wrinkles. The total heat transferred is low enough to prevent burns.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Pixilated temperature controlled substrate support assembly

Implementations described herein provide a pixilated substrate support assembly which enables both lateral and azimuthal tuning of the heat transfer between an electrostatic chuck and a heating assembly. The pixilated substrate support assembly comprises an upper surface and a lower surface; one or more main resistive heaters disposed in the pixilated substrate support; and a plurality of pixel heaters in column with the main resistive heaters and disposed in the substrate support. A quantity of the pixel heaters is an order of magnitude greater than a quantity of the main resistive heaters and the pixel heaters are independently controllable relative to each other as well as the main resistive heater.
Owner:APPLIED MATERIALS INC

Double-gate FinFET device and fabricating method thereof

The present invention relates to double-gate FinFET devices and fabricating methods thereof. More particularly, the invention relates to an electrically stable double-gate FinFET device and the method of fabrication in which the Fin active region on a bulk silicon substrate where device channel and the body are to be formed has a nano-size width and is connected to the substrate and is formed with the shape of a wall along the channel length direction.The conventional double-gate MOS devices are fabricated using SOI wafers which are more expensive than bulk silicon wafers. It also has problems including the floating body effects, larger source / drain parasitic resistance, off-current increase, and deterioration in heat transfer to the substrate.
Owner:KIPB LLC

Techniques using heat flow management, stimulation, and signal analysis to treat medical disorders

A device and a method of use for treating a medical disorder by surgically implanting into a patient at least one sensor element capable of detecting and conveying cell signals: attaching a management unit such that a micro controller of the management unit is connected to at least one sensor element; and connecting the management unit via a lead bundle to at least one treatment device. The treatment device may be an electrical stimulation device, a magnetic stimulation device, a heat transfer device, or a medication delivery device. Responsive to signals from the one or more sensor elements, mathematical algorithms of the management unit use wavelet crosscorrelation analysis to prompt delivery of at least one treatment modality, such heat transfer, current pulses, magnetic stimulation or medication. The medical disorder may arise from the brain, central nervous system or organs and tissues outside of the central nervous system.
Owner:THE JOHN HOPKINS UNIV SCHOOL OF MEDICINE

Showerhead mounting to accommodate thermal expansion

InactiveUS7722925B2Minimize and eliminate distortionGreat thermal expansion coefficientElectric discharge tubesSemiconductor/solid-state device manufacturingEngineeringThermal expansion
Methods and apparatus for accommodating thermal expansion of a showerhead. In a first aspect of the invention, the showerhead is movably supported by resting a rim of the showerhead on a support shelf. In a second aspect, the showerhead is suspended from the chamber wall by a plurality of hangers that are connected to the showerhead, the chamber wall, or both by pins that slide within slots so as to permit the hangers to slide radially to accommodate thermal expansion of the showerhead in the radial direction. In a third aspect, the showerhead is suspended from the wall of the vacuum chamber by a plurality of rods or flexible wires. In a fourth aspect, the showerhead is connected near its perimeter to a second material having a greater thermal expansion coefficient than the showerhead. In a fifth aspect, a heater is mounted behind the showerhead to reduce the temperature differential between the top and bottom surfaces of the showerhead or to reduce heat transfer from the workpiece to the showerhead.
Owner:APPLIED MATERIALS INC

Plasma processing apparatus

A plasma processing apparatus includes a mounting stage on which a substrate is mounted, a focus ring arranged around a periphery of the mounting stage, a plurality of magnetic members arranged at a surface of the focus ring and a surface of the mounting stage facing opposite each other, and a temperature adjustment unit configured to adjust a temperature of the focus ring by introducing a heat transfer gas between the surface of the focus ring and the surface of the mounting stage facing opposite each other.
Owner:TOKYO ELECTRON LTD

Secondary battery module

A secondary battery module includes a plurality of unit batteries, a housing receiving the unit batteries, a cell barrier plate disposed between the unit batteries to transfer heat generated from the unit batteries, a cooling plate disposed in contact with an end of the cell barrier plate, and a heat dissipation assembly disposed proximate to the cooling plate to dissipate heat transferred to the cooling plate.
Owner:SAMSUNG SDI CO LTD

Method and apparatus for controlling temperature of a substrate

A pedestal assembly and method for controlling temperature of a substrate during processing is provided. In one embodiment, the pedestal assembly includes a support member that is coupled to a base by a material layer. The material layer has at least two regions having different coefficients of thermal conductivity. In another embodiment, the support member is an electrostatic chuck. In further embodiments, a pedestal assembly has channels formed between the base and support member for providing cooling gas in proximity to the material layer to further control heat transfer between the support member and the base, thereby controlling the temperature profile of a substrate disposed on the support member.
Owner:APPLIED MATERIALS INC

High power light emitting diode package

The invention relates to a high power LED package, in which a package body is integrally formed with resin to have a recess for receiving an LED chip. A first sheet metal member is electrically connected with the LED chip, supports the LED chip at its upper partial portion in the recess, is surrounded by the package body extending to the side face of the package body, and has a heat transfer section for transferring heat generated from the LED chip to the metal plate of the board and extending downward from the inside of the package body so that a lower end thereof is exposed at a bottom face of the package body thus to contact the board. A second sheet metal member is electrically connected with the LED chip spaced apart from the first sheet metal member for a predetermined gap, and extends through the inside of the package body to the side face of the package body in a direction opposite to the first sheet metal member. A transparent sealant is sealingly filled up into the recess. The LED package raises thermal radiation efficiency with a simplified structure in order to reduce the size and thickness thereof.
Owner:SAMSUNG ELECTRONICS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products