Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

7551 results about "Perovskite" patented technology

Perovskite (pronunciation: /pəˈrɒvskaɪt/) is a calcium titanium oxide mineral composed of calcium titanate (CaTiO₃). Its name is also applied to the class of compounds which have the same type of crystal structure as CaTiO₃ (XᴵᴵA²⁺ⱽᴵB⁴⁺X²⁻₃), known as the perovskite structure. Many different cations can be embedded in this structure, allowing the development of diverse engineered materials.

In service programmable logic arrays with low tunnel barrier interpoly insulators

Structures and methods for in service programmable logic arrays with low tunnel barrier interpoly insulators are provided. The in-service programmable logic array includes a first logic and a second logic plan having a number of logic cells arranged in rows and columns that are interconnected to produce a number of logical outputs such that the in service programmable logic array implements a logical function. The logic cell includes a first source / drain region and a second source / drain region separated by a channel region in a substrate. A floating gate opposing the channel region and is separated therefrom by a gate oxide. A control gate opposes the floating gate. The control gate is separated from the floating gate by a low tunnel barrier intergate insulator. The low tunnel barrier intergate insulator includes a metal oxide insulator selected from the group consisting of PbO, Al2O3, Ta2O5, TiO2, ZrO2, Nb2O5 and / or a Perovskite oxide tunnel barrier.
Owner:MICRON TECH INC

Programmable memory address and decode circuits with low tunnel barrier interpoly insulators

Structures and methods for programmable memory address and decode circuits with low tunnel barrier interpoly insulators are provided. The decoder for a memory device includes a number of address lines and a number of output lines wherein the address lines and the output lines form an array. A number of logic cells are formed at the intersections of output lines and address lines. Each of the logic cells includes a floating gate transistor which includes a first source / drain region and a second source / drain region separated by a channel region in a substrate. A floating gate opposes the channel region and is separated therefrom by a gate oxide. A control gate opposing the floating gate. The control gate is separated from the floating gate by a low tunnel barrier intergate insulator. The low tunnel barrier intergate insulator includes a metal oxide insulator selected from the group consisting of PbO, Al2O3, Ta2O5, TiO2, ZrO2, Nb2O5 and / or a Perovskite oxide tunnel barrier.
Owner:MICRON TECH INC

High-yield preparing method for inorganic halogen perovskite fluorescent quantum dots at room temperature

The invention discloses a high-yield preparing method for inorganic halogen perovskite fluorescent quantum dots at the room temperature. The fluorescent quantum dots are CsPbX3, wherein X is equal to AxB1-x and is larger than or equal to 0 and smaller than or equal to 1, and A and B are any one of Cl, Br and I. The method comprises the following steps that firstly, lead halide and cesium halide are dissolved into dimethyl formamide, surfactant oleylamine and oleic acid are added, the mixture is stirred until complete dissolution, and a precursor solution is obtained; secondly, the precursor solution is dripped into a poor solvent at the speed of 0.08-0.13 mL/s and stirred evenly at the uniform speed, and the inorganic halogen perovskite fluorescent quantum dots CsPbX3 are obtained. The preparing method is implemented at the room temperature, protection gas is not needed, equipment is simple, mass production can be achieved, and full visible light band shining can be achieved by selecting halogen and adjusting the proportion of halogen. The full width at half maximum of the inorganic halogen perovskite fluorescent quantum dots prepared through the preparing method ranges from 16 nm to 39 nm, the fluorescence quantum efficiency is close to 90%, and the inorganic halogen perovskite fluorescent quantum dots can be stably stored for more than three months, and can be used in the field of solar cells, lasers, light detectors, light-emitting diodes and the like.
Owner:NANJING UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products