Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

44988 results about "Fuel cells" patented technology

Intraocular physiological sensor

An implantable intraocular physiological sensor for measuring intraocular pressure, glucose concentration in the aqueous humor, and other physiological characteristics. The implantable intraocular physiological sensor may be at least partially powered by a fuel cell, such as an electrochemical glucose fuel cell. The implantable intraocular physiological sensor may wirelessly transmit measurements to an external device. In addition, the implantable intraocular physiological sensor may incorporate aqueous drainage and / or drug delivery features.
Owner:GLAUKOS CORP

Apparatus and method of compensating for motor velocity of fuel cell vehicle

A method and apparatus that compensates for a velocity of a motor of fuel cell vehicle when a resolver is determined to have failed is provided. In particular, a wheel velocity sensor is configured to detect a wheel velocity of a driving wheel, and an ABS controller is configured to calculate an average wheel velocity and transmit the calculated average to a fuel cell controller (FCU). The FCU is configured to receive information related to the wheel velocity upon detecting that the resolver has failed, and control driving of the motor based on the data related to the wheel velocity so that the motor may maintain operation.
Owner:HYUNDAI MOTOR CO LTD

Fuel level monitoring system for combustion-powered tools

A fuel cell includes a spark initiator configured to initiate spark events, and a fuel level monitoring system configured for monitoring the fuel level in the fuel cell and indicating the monitored fuel level to a user. Included in the fuel level monitoring system is a programmable control unit configured to control the spark initiator and to count the spark events initiated by the spark initiator, to compare a number of spark events with at least two predetermined ranges of spark events, and to determine the fuel level in the fuel cell based on the determinations. An indicator controlled by the programmable control unit is supplied for providing the user with an indication of the fuel level in the fuel cell.
Owner:ILLINOIS TOOL WORKS INC

Fuel cell gas management system

A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.
Owner:EMPRISE TECH ASSOC

System and method for minimizing energy consumption in hybrid vehicles

The present invention provides a system and method relating to the operation of plug-in hybrid electric vehicles powered both by electricity from rechargeable batteries and by consumable fuel powered means, such as an internal combustion engine or a fuel cell. More particularly, the system and method of the claimed invention enable optimization of the energy cost associated with the operation of such plug-in hybrid electric vehicles, especially when the cost of recharging batteries from external electric power sources may be less than the cost of recharging batteries from the onboard consumable fuel powered means. To this end, the invention enables maximization of the use of electricity from external electric power sources and minimization of the use of electricity produced by the plug-in hybrid electric vehicle's onboard consumable fuel powered means, when the cost of recharging batteries from external electric power sources is less than the cost of recharging batteries from the onboard consumable fuel powered means.
Owner:SLINGSHOT IOT LLC

Materials and configurations for scalable microbial fuel cells

Devices for production of electricity and / or hydrogen gas are provided by the present invention. In particular, microbial fuel cells for production of electricity and modified microbial fuel cells for production of hydrogen are detailed. A tube cathode is provided which includes a membrane forming a general tube shape. An anode is provided which has a specific surface area greater than 100 m2 / m3. In addition, the anode is substantially non-toxic to anodophilic bacteria. Combinations of particular anodes and cathodes are included in microbial fuel cells and modified microbial fuel cells.
Owner:PENN STATE RES FOUND

Method and system for supplying hydrogen for use in fuel cells

The present invention provides a method and system for efficiently producing hydrogen that can be supplied to a fuel cell. The method and system of the present invention produces hydrogen in a reforming reactor using a hydrocarbon stream and water vapor stream as reactants. The hydrogen produced is purified in a hydrogen separating membrane to form a retentate stream and purified hydrogen stream. The purified hydrogen can then be fed to a fuel cell where electrical energy is produced and a fuel cell exhaust stream containing water vapor and oxygen depleted air is emitted. In one embodiment of the present invention, a means and method is provided for recycling a portion of the retentate stream to the reforming reactor for increased hydrogen yields. In another embodiment, a combustor is provided for combusting a second portion of the retentate stream to provide heat to the reforming reaction or other reactants. In a preferred embodiment, the combustion is carried out in the presence of at least a portion of the oxygen depleted air stream from the fuel cell. Thus, the system and method of the present invention advantageously uses products generated from the system to enhance the overall efficiency of the system.
Owner:MOBIL OIL CORP

Apparatus and method for heating subterranean formations using fuel cells

A fuel cell based subterranean heater for mineral extraction, in situ decontamination, or other applications. The fuel cells are preferably stacked within a casing which is then inserted into a hole bored, or otherwise formed, into the formation to be heated. Conduits within the casing, and preferably formed by adjacent, aligned holes formed through the plates of the individual fuel cells supply fuel and air and extract exhaust gases. An optional manifold is used to span the overburden without applying heat to it directly. The manifold may also function as a heat exchanger between incoming and exhaust gases. Preferably the fuel cell is fueled by gases produced by the formation and also generates electricity which is available for use or export.
Owner:IEP TECH INC

System and method for transferring electrical power between grid and vehicle

The present invention discloses a system for transferring electrical power between a grid and at least one vehicle. The vehicle can be Battery Electric Vehicle (BEV), Plug-in Hybrid Electric Vehicle (PHEV) or Fuel Cell Vehicle (FCV). The type of vehicle will be recognized and controlled by the system to support demand response and supply side energy management. Vehicle recognition can be carried out by load signature analysis, power factor measurement or RFID techniques. In an embodiment of the invention, the grid is a Smart Grid. The present invention also discloses a method for facilitating electrical power transfer between the grid and the vehicle.
Owner:ITRON NETWORKED SOLUTIONS INC

Fuel cartridge with connecting valve

A shut-off valve or connecting valve capable of connecting a fuel supply to a fuel cell is disclosed. The valve comprises a first valve component and a second valve component. Each valve component has an outer housing and a biased slidable member disposed inside the housing forming an internal seal. During the connection process, the two valve components establish an inter-component seal. Afterward, in one suitable embodiment the slidable member moves inward and opens the internal seal in the valve component to establish a flow path. In another embodiment, the slidable member moves inward and exposes a first filler and the first filler abuts a second filler in the other valve component to establish a flow path. In other embodiments, at least one valve component is sized and dimensioned to limit access to the internal seal.
Owner:INTELLIGENT ENERGY LTD

Fuel-cell engine stream conditioning system

A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.
Owner:EMPRISE TECH ASSOC

Electric vehicle having multiple-use APU system

During periods of vehicle inactivity, a vehicle-based APU electric generating system may be coupled into a regional electric grid to send electricity into the grid. A currently-preferred APU is a solid oxide fuel cell system. When a large number of vehicles are thus equipped and connected, substantial electric buffering can be effected to the grid load. A vehicle-based APU can also function as a back-up generator to a docking facility in the event of power failure of the grid. Gaseous hydrocarbon is readily supplied by pipe in many locations as a commercial and residential heating fuel source, and a hydrocarbon reformer on the vehicle can be attached to the fuel source, enabling an APU to operate as a stationary power source indefinitely. An optional storage tank on the vehicle may be refueled with gaseous fuel, for example, while the battery is being electrically recharged by the grid.
Owner:APTIV TECH LTD

System and method for co-production of hydrogen and electrical energy

A system and method for co-production of hydrogen and electrical energy. The system comprises a fuel cell assembly comprising a plurality of fuel cells. The fuel cells further comprise a cathode inlet for receiving a compressed oxidant, an anode inlet for receiving a fuel feed stream, an anode outlet in fluid communication with an anode exhaust stream and a cathode outlet in fluid communication with a cathode exhaust stream. At least a portion of the fuel feed stream reacts with the oxidant to produce electrical power. The anode exhaust stream comprises hydrogen. The co-production system further comprises a separation unit in fluid communication with the fuel cell assembly. The separation unit is configured to receive the anode exhaust stream from the fuel cell assembly to separate hydrogen from the anode exhaust stream.
Owner:GENERAL ELECTRIC CO

Methods for utilizing the electrical and non electrical outputs of fuel cell powered vehicles

The present invention provides a method and apparatus for generating electrical power from multiple vehicles powered by fuel cells while the vehicles are parked in a parking lot. A plurality of spaced-apart electrical receptacles are provided for receiving an electric cable for connection to a parked vehicle for electrically connecting the fuel cell in each of the parked vehicles to the plurality of electrical receptacles. An electric power grid is electrically connected to the plurality of electrical receptacles for transferring D.C. electrical power from the fuel cells in the parked vehicles to the electric power grid. At least one electric power collection station is electrically connected to the electric power grid for collecting at a common point the D.C. electric power in the electric power grid. In addition, at least one inverter is electrically connected to the electric power collection station for converting the D.C. electric power to A.C. electric power. Apparatus is provided for supplying the A.C. electric power to a load or a utility grid.
Owner:GROW INT

Fuel cartridge with flexible liner

A cartridge connectable to a fuel cell is disclosed. The cartridge comprises an outer casing and an inner flexible liner containing fuel for the fuel cell. The inner flexible liner may have an insert disposed inside the inner liner to facilitate the transport of fuel from the cartridge to the fuel cell. The insert minimizes the fuel that is trapped within the cartridge. The inner flexible liner can be used without the outer casing. The outer casing can be substantially rigid or flexible. The cartridge is also adaptable to receive byproducts from the fuel cell. The cartridge can also be pressurized to push fuel to the fuel cell. Unidirectional relief valves are also disclosed to prevent internal pressure in the cartridge from becoming too high or too low.
Owner:INTELLIGENT ENERGY LTD

Working fluids for thermal energy conversion of waste heat from fuel cells using rankine cycle systems

A process for recovering waste heat which comprises: (a) passing a liquid phase working fluid through a heat exchanger in communication with a process which produces the waste heat; (b) removing a vapor phase working fluid from the heat exchanger; (c) passing the vapor phase working fluid to an expander, wherein the waste heat is converted into mechanical energy; and (d) passing the vapor phase working fluid from the expander to a condenser, wherein the vapor phase working fluid is condensed to the liquid phase working fluid. The preferred working fluid is an organic Rankine cycle system working fluid comprising compounds having the following general structure: where x, y, z, and m are each selected from the group consisting of: fluorine, hydrogen, Rf, and R, wherein R and Rf are each an alkyl, aryl, or alkylaryl of 1 to 6 carbon atoms, and wherein Rf is partially or fully fluorinated.
Owner:HONEYWELL INT INC

System and method for enabling the real time buying and selling of electricity generated by fuel cell powered vehicles

The present invention relates to a network communication system and method to enable the real time buying and selling of electricity generated by fuel cell powered vehicles between a fuel cell powered vehicle and a consumer. The method comprises: providing connections to the vehicle for the supply of a fuel and for transfer of electricity; determining the current cost of fuel and price paid for generating electricity; based at least on the cost of fuel and price paid for generating electricity, determining whether to make the fuel cell powered vehicle available for generation of electricity; when fuel is consumed by the vehicle and electricity generated by the vehicle, collecting data on the quantity of fuel consumed and amount of electricity generated, calculating the cost of the fuel and the value of the electricity generated, providing a debit charge for the cost of fuel consumed and a credit charge for the value of electricity generated. A method to enable the real time buying and selling of electricity generated by fuel cell powered vehicles between an energy service provider and a consumer of electricity is also disclosed.
Owner:HYDROGENICS CORP

Composite bipolar plate for electrochemical cells

A bipolar separator plate for fuel cells consists of a molded mixture of a vinyl ester resin and graphite powder. The plate serves as a current collector and may contain fluid flow fields for the distribution of reactant gases. The material is inexpensive, electrically conductive, lightweight, strong, corrosion resistant, easily mass produced, and relatively impermeable to hydrogen gas. The addition of certain fiber reinforcements and other additives can improve the properties of the composite material without significantly increasing its overall cost.
Owner:TRIAD NAT SECURITY LLC

Power supply control for power generator

A system (100) for connecting a fuel cell stack to an A.C. grid to provide power thereto is disclosed in which a voltage regulated D.C. bus (110) is provided to be coupled to the fuel cell stack, a bidirectional inverter (120) is coupled to the D.C. bus (110), and is to be coupled between the D.C. bus (110) and the A.C. grid. At least one D.C. auxiliary load (130) of the fuel cell stack is provided coupled to the D.C. bus (110). A D.C. to D.C. converter (140) is provided between the fuel cell stack and the D.C. bus (110).
Owner:CERES INTPROP CO LTD

Waste heat recovery system and thermoelectric conversion system

A waste heat recover system includes a mechanism for supplying power by use of a thermoelectric conversion unit, and a mechanism for utilizing heat released from the thermoelectric conversion unit. Heat released from the thermoelectric conversion unit is utilized for, for example, heating, defrosting, defogging, temperature keeping of fuel, temperature keeping of an internal combustion engine, and temperature keeping of a fuel cell. The waste heat recovery system is equipped in, for example, cars, incinerators, fuel cells, and industrial machinery.
Owner:SHOWA DENKO KK

Nanowire-based membrane electrode assemblies for fuel cells

The present invention discloses nanowires for use in a fuel cell comprising a metal catalyst deposited on a surface of the nanowires. A membrane electrode assembly for a fuel cell is disclosed which generally comprises a proton exchange membrane, an anode electrode, and a cathode electrode, wherein at least one or more of the anode electrode and cathode electrode comprise an interconnected network of the catalyst supported nanowires. Methods are also disclosed for preparing a membrane electrode assembly and fuel cell based upon an interconnected network of nanowires.
Owner:ONED MATERIAL INC

High energy density vanadium electrolyte solutions, methods of preparation thereof and all-vanadium redox cells and batteries containing high energy vanadium electrolyte solutions

Disclosed is a method for preparing a high energy density (HED) electrolyte solution for use in an all-vanadium redox cells, a high energy density electrolyte solution, in particular an all-vanadium high energy density electrolyte solution, a redox cell, in particular an all-vanadium redox cell, comprising the high energy density electrolyte solution, a redox battery, in particular an all-vanadium redox battery, comprising the HED electrolyte solution, a process for recharging a discharged or partially discharged redox battery, in particular an all-vanadium redox battery, comprising the HED electrolyte solution, a process for the production of electricity from a charged redox battery, and in particular a charged all-vanadium redox battery, comprising the HED electrolyte, a redox battery / fuel cell and a process for the production of electricity from a redox battery / fuel cell. A method for stabilising an electrolyte solution for use in a redox cell, in particular for stabilising an electrolyte solution for use in an all-vanadium redox cell, a stabilised electrolyte solution, in particular an all-vanadium stabilised electrolyte solution, a redox cell, in particular an all-vanadium redox cell, comprising the stabilised electrolyte solution, a redox battery, in particular an all-vanadium redox battery comprising the stabilised electrolyte solution, a process for recharging a discharged or partially discharged redox battery, in particular an all-vanadium redox battery, comprising the stabilised electrolyte solution, and a process for the production of electricity from a charged redox battery, and in particular a charged all-vanadium redox battery, comprising the stabilised electrolyte solution are disclosed. Also disclosed are a redox battery / fuel cell and a process for the production of electricity from a redox battery / fuel cell.
Owner:JD HLDG INC

Method for preparing loading functional oxide porous carbon

InactiveCN101780952AThe shape is fine and differentFine and varied structureOther chemical processesBy adsorptionPorous carbonMaterials science
The invention relates to a method for preparing a loading functional oxide porous carbon, which belongs to the technical field of carbon material. The method comprises the following steps of: selecting biomass material, and carbonizing at the temperature of 400-1000 DEG C in vacuum or on inert condition; preparing porous carbon by a physical activating or chemical activating process according to the requirement on the pore structure by the carbonized porous carbon; immersing the porous carbon into a precursor solution of an element M, cleaning many times with distilled water, and drying; roasting on the porous carbon at the temperature of 300-1000 DEG C in vacuum or on inert atmosphere, and then the active carbon of the loading functional oxide MxOy is prepared. The active carbon of the loading functional oxide MxOy prepared by the invention has the special pore structure of the biomass, also has the functions performed by the oxides, and has important application value in water treatment, hydrogen storage, photocatalysis, fuel cells and relevant fields.
Owner:SHANGHAI JIAO TONG UNIV

Energy transfer device for series connected energy source and storage devices

A low cost, efficient, and rapid means for transferring energy or balancing charge among multiple, series connected batteries, capacitors, photovoltaic cells, fuel cells, and other types of energy source or storage devices is provided. Modules that transfer energy by moving charge from one or more series connected energy devices directly to one or more other energy devices in the string are disclosed. The modules utilize steering circuits comprised of switches and rectifiers, and energy storage elements such as inductors and transformers, to transfer energy between multiple energy devices in the string. The modules may be used in combination with string charging devices and loads. The modules provide a means to balance charge or potential of the energy devices, which is known to provide benefits of increased life and capacity.
Owner:NEAR TIMOTHY PAUL

Fuel cell platelet separators having coordinate features

PCT No. PCT / US95 / 13325 Sec. 371 Date Sep. 28, 1997 Sec. 102(e) Date Sep. 28, 1997 PCT Filed Oct. 10, 1995 PCT Pub. No. WO96 / 12316 PCT Pub. Date Apr. 25, 1996Fuel cell stacks comprising stacked separator / membrane electrode assembly fuel cells in which the separators comprise a series of thin sheet platelets, having individually configured serpentine micro-channel reactant gas humidification active areas and cooling fields therein. The individual platelets are stacked with coordinate features aligned in contact with adjacent platelets and bonded to form a monolithic separator. Post-bonding processing includes passivation, such as nitriding. Preferred platelet material is 4-25 mil Ti, in which the features, serpentine channels, tabs, lands, vias, manifolds and holes, are formed by chemical and laser etching, cutting, pressing or embossing, with combinations of depth and through etching preferred. The platelet manufacturing process is continuous and fast. By employing CAD based platelet design and photolithography, rapid change in feature design can accommodate a wide range of thermal management and humidification techniques. One hundred H2-O2 / PEM fuel cell stacks of this IFMT platelet design will exhibit outputs on the order of 0.75 kW / kg, some 3-6 times greater than the current graphite plate PEM stacks.
Owner:H POWER

Fuel cell system capable of reducing electric power loss

A fuel cell system minimizes the power loss that may occur in a conduction passage during supply of electric power from a fuel cell to a load. A bypass connects between the input of a DC / DC converter and the output thereof, and therefore supplies power generated by the fuel cell to an inverter, bypassing the DC / DC converter. A changeover switch selectively changes the connection of the output of the fuel cell between the connection to the input of the DC / DC converter and the connection to the bypass. When the fuel cell is connected to the DC / DC converter, the power from the fuel cell is supplied to the inverter or a battery via the DC / DC converter. When the fuel cell is connected to the bypass, the power from the fuel cell is supplied to the inverter, bypassing the DC / DC converter. A cutoff switch disconnects the output of the battery from a connecting line. That is, the cutoff switch disconnects the battery from the inverter, the bypass and the like when turned off. When turned on, the cutoff switch 41 connects the battery to those components.
Owner:TOYOTA JIDOSHA KK

AC impedance monitoring of fuel cell stack

A ripple voltage, caused by a voltage inverter, is superimposed on an output voltage provided by a fuel cell stack. This ripple voltage is sensed and used to determine an AC impedance of the fuel cell stack. The determined AC impedance can be correlated to a hydration state of the fuel cell stack.
Owner:FORD MOTOR CO +1

Energy efficient gas separation for fuel cells

An electrical current generating system is disclosed that includes a fuel cell operating at a temperature of at least about 250° C. (for example, a molten carbonate fuel cell or a solid oxide fuel cell), a hydrogen gas separation system or oxygen gas delivery system that includes a compressor or pump, and a drive system for the compressor or pump that includes means for recovering energy from at least one of the hydrogen gas separation system, oxygen gas delivery system, or heat of the fuel cell. The drive system could be a gas turbine system. The hydrogen gas separation system or the oxygen gas delivery system may include a pressure swing adsorption module.
Owner:AIR PROD & CHEM INC

Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions

The process of the invention converts carbonaceous feedstock such as coal, hydrocarbon oil, natural gas, petroleum coke, oil shale, carbonaceous-containing waste oil, carbonaceous-containing medical waste, carbonaceous-containing military waste, carbonaceous-containing industrial waste, carbonaceous-containing medical waste, carbonaceous-containing sewage sludge and municipal solid waste, carbonaceous-containing agricultural waste, carbonaceous-containing biomass, biological and biochemical waste, and mixtures thereof into electrical energy without the production of unwanted greenhouse emissions. The process uses a steam / CO2 reformer operating in the exit range of at least 700° to about 1600° C. (1300-2900°0 F.) to convert the carbonaceous feedstock and a greenhouse gas stream into a synthesis gas comprising mostly carbon monoxide and hydrogen that contains poisons and the compounds that poison fuel cells. The syngas is sent to an interface zone to remove these poisons and other fouling compounds that are electrochemically oxidized in an electricity-producing fuel cell into an exit gas comprising carbon dioxide and water.
Owner:RAVEN SR INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products