Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

646 results about "Common point" patented technology

Common point. The point where multiple non-parallel lines intersect on the same plane. A common point can also represent the convergence of multiple viewpoints among people.

Methods for utilizing the electrical and non electrical outputs of fuel cell powered vehicles

The present invention provides a method and apparatus for generating electrical power from multiple vehicles powered by fuel cells while the vehicles are parked in a parking lot. A plurality of spaced-apart electrical receptacles are provided for receiving an electric cable for connection to a parked vehicle for electrically connecting the fuel cell in each of the parked vehicles to the plurality of electrical receptacles. An electric power grid is electrically connected to the plurality of electrical receptacles for transferring D.C. electrical power from the fuel cells in the parked vehicles to the electric power grid. At least one electric power collection station is electrically connected to the electric power grid for collecting at a common point the D.C. electric power in the electric power grid. In addition, at least one inverter is electrically connected to the electric power collection station for converting the D.C. electric power to A.C. electric power. Apparatus is provided for supplying the A.C. electric power to a load or a utility grid.
Owner:GROW INT

Information system and method for providing information using a holographic element

In the following, the essential points are summarized again by means of groups of characteristics which each individually and in combination with one another characterize the invention specifically: 1. Information system for providing information in correlation with light incident on an eye, having a holographic element disposed in front of the eye, and an optical scanning device which detects light incident on the eye by way of the holographic element. 2. Information system according to Point 1, wherein the optical scanning device is at a fixed predetermined angular ratio with respect to the holographic element. 3. Information system according to Point 1 or 2, wherein the optical scanning device detects light which is refracted by the holographic element before it impinges on the eye and does not enter the eye. 4. Information system according to one of the preceding points, wherein the optical scanning device detects light which was first reflected back from the eye and was then refracted by the holographic element. 5. Information system according to one of the preceding points, wherein the holographic element refracts light originating from the field of vision of the eye only at several discrete wavelengths in the visible range before the light impinges on the eye for the detection by the optical scanning device, and refracts light reflected back from the eye only at one discrete wavelength in the infrared range for the detection by the optical scanning device. 6. Information system according to one of the preceding points, wherein the holographic element refracts light originating from the field of vision of the eye at fewer than 20, fewer than 10 or fewer than 5 discrete wavelengths in the visible range either before the light impinges on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 7. Information system according to one of the preceding points, wherein the holographic element refracts light originating from the field of vision of the eye at a discrete wavelength in the infrared range either before the light impinges on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 8. Information system according to one of the preceding points, wherein the holographic element refracts light reflected back by the eye only at a discrete wavelength in the infrared range for the detection by the optical scanning device. 9. Information system according to one of the preceding points, wherein the holographic element refracts light of one or several discrete wavelengths, at which the optical scanning device has a high sensitivity. 10. Information system according to one of the preceding points, wherein the holographic element refracts light a several discrete wavelengths such that the refracted light is guided to a common point, and the angle of incidence of the light on this point permits a clear optionally also wavelength-independent conclusion on the angle of incidence of the light upon the holographic element. 11. Information system according to one of the preceding points, having an optical projection device which projects light into the eye by way of the holographic element. 12. Information system according to Point 11, wherein the light detected by the optical detection device and the light projected in front of the optical projection device run in the opposite direction through a common light guiding lens system and can be focused such by the optical scanning device or projection device that their respective beams describe the same path from or into the eye. 13. Information system for providing information in correlation with information obtained from an eye, having a holographic element disposed in front of the eye, and an optical projection device which projects light into the eye by way of the holographic element. 14. Information system according to one of Points 11 to 13, wherein the optical projection device projects light only at one or several discrete wavelengths in the visible range and / or at a wavelength in the infrared range. 15. Information system according to one of Points 11 to 14, wherein the holographic element refracts the wavelengths of the projected light. 16. Information system according to one of Points 11-15, wherein the optical projection device is in a fixed predetermined angular ratio with respect to the holographic element. 17. Information system according to Point 16, wherein the holographic element comprises one or more optical flags, whose light reflection characteristics can be used by the information system by means of a photodetector for calibrating a projection angle of the optical projection device and / or a light guiding device. 18. Information system according to Point 17, including Point 12, wherein the information system uses the light reflection characteristics of the optical flags for calibrating a scanning angle of the optical scanning device and / or a light guiding device. 19. Information system according to Point 17, wherein the optical flags are generated in that reflecting elements are imaged during the creating of the holographic element such in the holographic element that they (something is missing) reflect light of one or several wavelengths which, corresponding to the predetermined angular ratio with respect to the optical projection device is incident on the holographic element, back along the path of incidence. 20. Information system according to Point 19, wherein the photodetector device has a splitter mirror which is arranged such in the light beam of the optical projection device that it guides a portion of the light, which impinges on the splitter mirror against the projection direction, in the direction of a photodetector which detects in at least two areas situated concentrically around one another. 21. Information system according to one of the preceding points, wherein the holographic element has light-refracting characteristics at one or several discrete wavelengths, which correspond to a reflection on the concave side of an area constructed according to the curvature of a rotationally symmetrical ellipsoid. 22. Information system according to one of the preceding points, wherein the holographic element has light refracting characteristics at one or several discrete wavelengths, which correspond to a refraction on the concave side of an area constructed according to the curvature of a rotationally symmetrical ellipsoid, which refraction corresponds to a reflection on a respective conical surface which is rotationally symmetrical about the axis of rotation of the ellipsoid and is perpendicular with respect to the ellipsoid at the site of the refraction. 23. Method of providing information in correlation with light incident on an eye, whereby a holographic element is disposed in front of the eye, and an optical scanning device detects the light incident on the eye by means of the holographic element. 24. Method according to Point 23, whereby the optical scanning device is at a fixed predetermined angular ratio with respect to the holographic element. 25. Method according to Point 23 or 24, whereby the optical scanning device detects light which is refracted by the holographic element before impinging on the eye and does not enter the eye. 26. Method according to one of Points 23 to 25, whereby the optical scanning device detects light which was first reflected back from the eye and was then refracted by the holographic element. 27. Method according to one of Points 23 to 26, whereby the holographic element refracts light originating from the field of vision of the eye only at several discrete wavelengths in the visible range before its impinging on the eye for the detection by the optical scanning device and refracts light reflected back from the eye only at a discrete wavelength in the infrared range for the detection by the optical scanning device. 28. Method according to one of Points 23 to 27, whereby the holographic element refracts light originating from the field of vision of the eye at fewer than 20, fewer than 10 or fewer than 5 discrete wavelengths in the visible range either before its impinging on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 29. Method according to one of Points 23 to 28, whereby the holographic element refracts light originating from the visual field of the eye at a discrete wavelength in the infrared range either before its impinging on the eye or after its backscattering as a result of the eye for the detection by the optical scanning device. 30. Method according to one of Points 23 to 29, whereby the holographic element refracts light reflected back from the eye only at a discrete wavelength in the infrared range for the detection by the optical scanning device. 31. Method according to one of Points 23 to 30, whereby the holographic element refracts light of one or several discrete wavelengths, at which the optical scanning device has a high sensitivity. 32. Method according to one of Points 23 to 31, whereby the holographic element refracts light at several discrete wavelengths such that the refracted light is guided to a common point, an the angle of incidence of the light onto this point allows a clear, optionally also wavelength-independent conclusion on the angle of incidence of the light upon the holographic element. 33. Method according to one of Points 23 to 32, whereby an optical projection device projects light by way of the holographic element into the eye. 34. Method according to Point 33, whereby the light detected by the optical scanning device and the light projected in front of the optical projection device run in the opposite direction through a common light guiding lens system and can be focused such by the optical scanning device or projection device that their respective beams describe the same path from or into the eye. 35. Method of providing information in correlation with information obtained from an eye, whereby a holographic element is disposed in front of the eye, and an optical projection device projects light by way of the holographic element into the eye. 36. Method according to points 33 to 35, whereby the optical projection device projects light only at one or several discrete wavelengths in the visible range and / or at a wavelength in the infrared range. 37. Method according to one of Points 33 to 36, whereby the holographic element refracts the wavelengths of the projected light. 38. Method according to one of Points 33 to 37, whereby the optical projection device is in a fixed predetermined angular ratio with respect to the holographic element. 39. Method according to Point 38, whereby the holographic element is equipped with one or more optical flags, whose light reflection characteristics can be used by means of a photodetector device for calibrating a projection angle of the optical projection device and / or a light guiding device. 40. Method according to Point 39, including Point 34, whereby the light reflection characteristics of the optical flags are used for calibrating a scanning angle of the optical scanning device and / or a light guiding device. 41. Method according to Point 39, whereby the optical flags are generated in that reflecting elements are imaged during the creating of the holographic element such in the holographic element that they beam light of one or more wavelengths which, corresponding to the predetermined angular ratio with respect to the optical projection device is incident on the holographic element, back along the incidence path. 42. Method according to Point 41, whereby the photodetector device is equipped with a photodetector detecting in at least two areas situated concentrically around one another, and a splitter mirror which is arranged such in the light beam of the optical projection device that it directs a portion of the light impinging on the splitter mirror against the projecting direction, in the direction of the photodetector. 43. Method according to one of Points 23 to 42, whereby the holographic element has light-refracting characteristics at one or several discrete wavelengths which correspond to a reflection on the concave side of an area constructed according to a curvature of a rotationally symmetrical ellipsoid. 44. Method according to one of Points 23 to 43, whereby the holographic element has light-refracting characteristics at one or several discrete wavelengths, which correspond to a refraction on the concave side of an area constructed according to a curvature of a rotationally symmetrical ellipsoid, which refraction corresponds to a reflection on a respective conical surface rotationally symmetrical about the axis of rotation of the ellipsoid, which conical surface is perpendicular with respect to the ellipsoid at the site of the refraction. While the preceding description with respect to the title is limited to embodiments falling under the initially mentioned generic terms “scanning information system” and “projecting information system”, each individual discussed characteristic of their disclosure can also be used in an embodiment of the systems, devices and methods initially identified by reference to their full content. The applications by the same applicant and / or the same inventors mentioned in the present application should be considered to be a correlated invention complex.
Owner:APPLE INC

Device for non-dissipative measurement of the current in an inductor

The invention relates to a device for measuring current in an inductor, which device is intended to be connected in parallel with said inductor, comprising two terminals A and B. The device comprises: a network in parallel with the inductor and connected to the terminals A and B having a resistor R2 in series with a resistor R1 in parallel with a capacitor C1; a voltage offset circuit having a DC voltage generator E connected in parallel with an offset resistor (Roffset) in series with two resistors in parallel R3 and R4, the positive pole of this voltage source being connected to terminal B of the inductor; a temperature compensation circuit comprising a current source controlled as a function of the temperature, one of the two terminals of the current source being connected to the negative pole of the generator E, the other terminal of the current source being connected to different points of the measurement device according to the direction of variation of the current of the source as a function of the temperature. The measurement of voltage Vmes, the image of the current I in the inductor 12, is performed between the common point between the resistors R1, R2 of the network and the common point between the offset resistor and the two resistors R3 and R4.
Owner:THALES SA

Time division multiple access over broadband modulation method and apparatus

A communication system is disclosed for providing dedicated bandwidth to at least one subscriber location for transmitting to a common point of distribution via an HFC network. In an embodiment of the invention, the communication system includes a channel interface module and at least one gateway coupled across the HFC network. The channel interface module is located at the point of distribution and includes a transmitter that transmits a windowing signal via the HFC network. The gateway is located at a subscriber location and includes a processor that encapsulates subscriber data into data cells suitable for burst transmission, receive logic that receives the windowing signal, timing logic that indicates burst transmission times only at programmed time slots within each of repeating transmission windows based on the windowing signal and a predetermined transmission timing offset, and a burst transmitter that burst transmits subscriber data cells in a predetermined upstream frequency channel when indicated by the timing logic.
Owner:INCEPTIA +1

Sensor for detecting the direction of a magnetic field in a plane

The invention relates to a sensor for detecting the direction of a magnetic field in a plane whose direction can be defined by the indication of a polar angle ?. Said sensor comprises a number of n magnetic field sensors (3.0 to 3.7). A measurement axis (8.1 to 8.4) is assigned to each magnetic field sensor in such a manner that the absolute value of the output signal of the magnetic field sensor is largest when the magnetic field runs parallel to the measuring axis. All measuring axes intersect at a common point (5). The number k of measuring axes is equal to at least three. An operating mode is provided during which two magnetic field sensors are selected for calculating the angle ?. These two magnetic field sensors belong to different measuring axes, and the values of the output signals thereof are less than those of the output signals of the magnetic field sensors belonging to the other measuring axes.
Owner:MELEXIS TECH NV

General-purpose medical instrumentation

A general-purpose, low-cost system provides comprehensive physiological data collection, with extensive data object oriented programmability and configurability for a variety of medical as well as other analog data collection applications. In a preferred embodiment, programmable input signal acquisition and processing circuits are used so that virtually any analog and / or medical signal can be digitized from a common point of contact to a plurality of sensors. A general-purpose data routing and encapsulation architecture supports input tagging and standardized routing through modern packet switch networks, including the Internet; from one of multiple points of origin or patients, to one or multiple points of data analysis for physician review. The preferred architecture further supports multiple-site data buffering for redundancy and reliability, and real-time data collection, routing, and viewing (or slower than real-time processes when communications infrastructure is slower than the data collection rate). Routing and viewing stations allow for the insertion of automated analysis routines to aid in data encoding, analysis, viewing, and diagnosis.
Owner:MEDCOM NETWORK SYST LLC

Soft handoff method for uplink wireless communications

Soft-handoff methods involve receiving an uplink signal from a user equipment at more than one basestation. The uplink signals are processed at each basestation before being backhauled to a common point for use to derive a single signal from the user equipment. One problem with previous types of soft-handoff methods is that relatively complex processing is required at each basestation in order to demodulate and decode the signals. It is also desired to further increase uplink capacity as compared with known types of soft-handoff methods. This is achieved by backhauling signals without carrying out any decoding of the uplink signal at the basestation. The backhauled signals are combined at a common point using maximal ratio combining before being fully demodulated and decoded. As a result capacity is increased and required user equipment transmit power is reduced.
Owner:APPLE INC

Tendon link mechanism with six degrees of freedom

A computer-controlled parallel-leg mechanism, with three pairs of remotely-actuated tendon legs, provides accurate six-degrees-of-freedom motion and positioning for a tool platform. Leg pair termination at a common point with three degrees of pivoting freedom is provided by a unique linkage joint. Non-intrusive tool-position feedback is enabled by nine shaft encoders mounted at the mechanism's base end.
Owner:MORAN MICHAEL JULIUS

Barrier synchronization mechanism for processors of a systolic array

A mechanism synchronizes among processors of a processing engine in an intermediate network station. The processing engine is configured as a systolic array having a plurality of processors arrayed as rows and columns. The mechanism comprises a barrier synchronization mechanism that enables synchronization among processors of a column (i.e., different rows) of the systolic array. That is, the barrier synchronization function allows all participating processors within a column to reach a common point within their instruction code sequences before any of the processors proceed.
Owner:CISCO TECH INC

Tendon link mechanism with six degrees of freedom

A computer-controlled parallel-leg mechanism, with three pairs of remotely-actuated tendon legs, provides accurate six-degrees-of-freedom motion and positioning for a tool platform. Leg pair termination at a common point with three degrees of pivoting freedom is provided by a unique linkage joint. Non-intrusive tool-position feedback is enabled by nine shaft encoders mounted at the mechanism's base end.
Owner:MORAN MICHAEL JULIUS

Method for generating a network map

An intelligent traffic redirection system performs global load balancing for Web sites located at mirrored data centers. The system relies on a network map that is generated continuously, preferably for the user-base of the entire Internet. Instead of probing each local name server (or other host) that is connectable to the mirrored data centers, the network map identifies connectivity with respect to a much smaller set of proxy points, called “core” (or “common”) points. A core point is representative of a set of local name servers (or other hosts) that, from a data center's perspective, share the point. To discover a core point, an incremental trace route is executed from each of the set of mirrored data centers to a local name server that may be used by client to resolve a request for a replica stored at the data centers. An intersection of the trace routes at a common routing point is then identified. Thus, for example, the common routing point may be the first common point for the trace routes when viewed from the perspective of the data centers (or the last common point for the trace routes when viewed from the perspective of the local name server). The common routing point is then identified as the core point for the local name server.
Owner:AKAMAI TECH INC

Vehicle with movable and inwardly tilting safety body

ActiveUS20050275181A1Reduce the detrimental effects on vehicle handlingImprove vehicle handlingVehicle body stabilisationVehicle cleaning apparatusEngineeringInterconnection
A suspension system for a vehicle (50c) having a body (52c) and a plurality of wheel support assemblies (56c, 58c) includes a tie structure (60c) interposed between the body and the wheel support assemblies. A first interconnection system (68c) interconnects the tie structure to the wheel support assemblies, and the second interconnection system (302) interconnects the tie structure and the body. The second interconnection system includes a plurality of link structures (304, 320) pivotally connected at one end to the tie structure, and pivotally connected at the opposite end to the body. Such link structures are oriented relative to the tie structure to extend towards a common point along a longitudinal axis (33B) of the tie structure.
Owner:MACISAAC WILLIAM L

Control message routing within anycast reliant platforms

Some embodiments provide a transport session discovery protocol that enables load balancing devices of an Anycast reliant distributed platform to route legacy control messages to destinations within the distributed platform that manage the sessions or connections implicated by the legacy control messages, even when the implicated sessions or connections cannot be directly identified from the control message headers. The modified load balancing operation as a result of the transport session discovery protocol involves identifying a message header mapping to an unrecognized session or connection, extracting session or connection identifying information and an error or condition from the message body, generating a new messaging construct to encapsulate the extracted information, and multicasting the messaging construct to other load balancing devices operating within a common point-of-presence. The load balancing device having knowledge of the server managing the implicated session then routes the error or condition to that server.
Owner:EDGIO INC

Method and system for network communication of wireless sensor

The invention discloses one wireless sensor network communication method and system, which comprises the following steps: process center point sends broadcast in initial time and the point measures self and process center distance through the broadcast information; network point organism forms cluster structure and selecting cluster point front network gate and common point front cluster head in initial time; cluster member collects data in set time gap and sends to cluster head; the cluster head and front network gate transmit time gap data to process central point.
Owner:HUAZHONG UNIV OF SCI & TECH

Integrated soa deployment and management system and method for software services

A method and appertaining system provide that an integrated Service Oriented Architecture (SOA) repository stores functional and non-functional requirements and associated data and results of associated with software services across the software lifecycle, thereby permitting access at a common point or in a common way by a user to all relevant information about the software service at least during the development, testing, and run-time stages of the software service. Thus, all design documents, testing requirements and results, and run-time policies and contracts can be provided in a common location to facilitate development in the service oriented architecture.
Owner:HEWLETT-PACKARD ENTERPRISE DEV LP

Three-dimensional shape measuring method and apparatus for the same

A three-dimensional shape measuring apparatus includes a line laser light source (1) and an image capturing device (2). A three-dimensional shape measuring method and apparatus is characterized by irradiating a line laser beam to an object (3) to be measured from a laser projecting device, imaging points (6) irradiated with the laser beam by the image capturing device (2, detecting points on taken images as intersections (8), each of the points being detected from the taken images and being detected as a common point where line laser beams pass, deriving equations including the positions of the laser planes and the three-dimensional positions of the intersections as unknowns based on the detected intersections, determining the three-dimensional positions of the intersections and the positions of the laser planes by solving the derived equations as simultaneous equations, calculating by triangulation the three-dimensional positions of the points irradiated with the laser beams other than the intersections by using the positions of laser planes, and obtaining the three-dimensional shape of the object by repeating the series of processes.
Owner:TECHNODREAM21

Common point authoring system for the complex sharing of hierarchically authored data objects in a distribution chain

The Common Point Authoring system functions to provide Livestock Informational Objects via the use of a centralized repository of uniquely identified, immutable Livestock Informational Objects. This system automates the authoring, maintenance, and distribution of the Livestock Informational Objects by using an Internet-based paradigm and a centralized repository of uniquely-identified, immutable Data Elements. The Common Point Authoring system provides a set of software modules that the manufacturers can use to author, maintain, and distribute Livestock Informational Objects and their customers, as Members of the system of Livestock Informational Objects, can use to retrieve, maintain, and distribute the Livestock Informational Objects. The system's interconnectivity allows for the use of an Internet-based paradigm for the purchase and sale among Members of the system of Livestock Informational Objects as commodities, and for reducing the burden costs among Members of compliance with government regulations.
Owner:PARDALIS TECH LICENSING LLC

Method for automatically matching multisource space-borne SAR (Synthetic Aperture Radar) images based on RFM (Rational Function Model)

ActiveCN102213762AAutomatic and reliable matchingMeet the requirements for co-locationRadio wave reradiation/reflectionSynthetic aperture radarWorkload
The invention discloses a method for automatically matching multisource space-borne SAR (Synthetic Aperture Radar) images based on an RFM (Rational function model). The method comprises the following steps of: calculating respective RPC (Rational Polynominal Coefficient) parameter of images; performing forecast of initial positions of points to be matched, matching of approximate epipolar line geometric establishment constraints and geometric rough correction of matched window images by using the RPC parameters of the images on every pyramid image layer, deleting wrong matching points from the image matching result of every layer of pyramid by adopting regional computer network error compensation based on an RFM model; refining the RPC parameters of the images and calculating the object space coordinates of the matching points; refining the matching result to the original image layer by layer; and refining a matching result by using a least square image matching method to realize automatic and reliable matching of common points of multisource space-borne SAR images. In the method, the RFM model is introduced into automatic matching of the multisource space-borne SAR images, and the regional computer network error compensation of the RFM model is blended into the image matching process of every layer pyramid, so that wrong matching points in the matching process can be effectively deleted, and the workload of manual measurement of common points is effectively lowered.
Owner:CCCC SECOND HIGHWAY CONSULTANTS CO LTD

Rotate-pan-tilt camera for videoimaging, videoconferencing, production and recording

The present invention is a videoimaging system with boom-mounted pan-tilt-zoom video camera in which the camera core is mounted on a remotely-controlled rotate-pan-tilt mount for three-axis rotation about three mutually orthogonal axes, a vertical yaw axis, a horizontal roll axis, and a horizontal pitch axis, all three axes intersecting at a common point. Rotation of the camera core about the yaw axis varies the azimuth (compass bearing) of the pointing direction of the camera, rotation about the roll axis varies the angular orientation of the field of view, and rotation about the pitch axis varies the altitude (angle of elevation) of the pointing direction. The camera and lighting unit disclosed herein provides a remote control zoom and improved pan-tilt mechanism for videoimaging, videoconferencing, production, lighting and recording.
Owner:KING SIMON P

Tandem mass spectrometer

A tandem mass spectrometer includes a two-dimensional ion trap that has an elongated ion-trapping region extending along a continuously curving path between first and second opposite ends thereof. The elongated trapping region has a central axis that is defined substantially parallel to the curved path and that extends between the first and second opposite ends. The two-dimensional ion trap is configured for receiving ions through the first end and for mass selectively ejecting the ions along a direction that is orthogonal to the central axis, such that the ejected ions are directed generally toward a common point. The tandem mass spectrometer also includes a collision cell having an ion inlet that is disposed about the common point for receiving the ions that are ejected therefrom and for causing at least a portion of the ions to undergo collisions and form product ions by fragmentation. A mass analyzer in communication with the collision cell receives the product ions from the collision cell and obtains product ion mass spectra with a rapid scan rate. In this way, a plurality of product ion spectra may be obtained for a large number of precursor ions in a sample without the need for data-dependent operation.
Owner:THERMO FINNIGAN

Method for calibrating star sensor

The invention relates to a method for calibrating a star sensor, which can effectively solve the problems of low calibrating speed, low efficiency and high hardware requirements of the star sensor. The method comprises the following steps of: calibrating internal parameters of the star sensor to obtain a coordinate of a mark point in a coordinate system of a photogrammetric system; carrying out image processing on a picture and calculating internal parameters of cameras; establishing a transit surveying coordinate system; carrying out measurement on a manual surveying mark of a calibrating field by using a transit surveying system to obtain a three-dimensional coordinate of the manual surveying mark in the coordinate system of the transit surveying system; carrying out common point conversion by utilizing a three-dimensional coordinate value to obtain a conversion relation of the coordinate system of the calibrating field and the coordinate system of the transit surveying system and converting the coordinate system of the transit surveying system and a cubic prism coordinate system into the coordinate system of the calibrating field; and taking a picture of the calibrating field again to obtain a relation of the two cameras and the cubic prism coordinate system. The method for calibrating the star sensor of the invention has the advantages of simple calibrating process, low required precision for the hardware, high calibrating precision and high speed, greatly improves the working efficiency and is an innovation on the calibration of the star sensor.
Owner:BEIJING INST OF CONTROL ENG +1

Method for optical measurement of the three dimensional geometry of objects

The invention relates to a method for optically scanning the three-dimensional geometry of an object by means of triangulation, in which a pattern (9, 9′) is projected onto the object (7) to be scanned in order to obtain a 3D data set, and the projected pattern (9, 9′) is recorded in an image (40, 41). In a first step for the production of at least one first image (40), a first pattern (9) is projected and in a second step for the creation of at least one further image (40), a further pattern (9′) deviating from the first as regards position or shape is projected onto the object (7) to be scanned and the image (41) is created. The first image (40) and the further image (41) comprise at least one common point (44). The 3D data acquired from the images (40, 41) are merged in a subsequent step on the basis of the 3D data of the at least one common point (44) such that the 3D data acquired from said images (40, 41) agree at least with reference to the 3D data of the common point (44) in the 3D data set.
Owner:SIRONA DENTAL SYSTEMS

Discrete linear space sampling method and apparatus for generating digital 3D models

A discrete linear space sampling method and system for generating digital 3D models comprising. A plurality of digital images are acquired of a subject from a respective plurality of image sensor positions near the image sensor location. Candidate 3d-spels are identified, each 3d-spel being an image pixel corresponding to a common point on said subject. Candidate 3d-spels are rejected based on a differential analysis of the candidate 3d-spels, the remaining 3d-spels forming a set of accepted 3d-spels. 3D coordinates are calculated for each accepted 3d-spel, thereby forming a point-cloud of the subject.
Owner:SPATIAL INTEGRATED SYST

M x n wss with reduced optics size

A M×N wavelength selective switch (WSS) module capable of independently routing any wavelength channel from any input port to any output port is provided. The M×N WSS includes a first beam relayer including first and second elements having optical power, each of which is disposed such that light transmitted to or from a first plurality of ports passes through a common point. The M×N WSS also includes a wavelength dispersive element, a first switching array having M rows including K switching elements, a second beam relayer, and a second switching array including N switching elements. The second switching array includes an optical by-pass disposed at the common point, which provides means for separating the input and output beams of light, and which allows both the input and output optical beams to traverse similar paths throughout the optical train.
Owner:LUMENTUM OPERATIONS LLC

Voltage source circuit with selectable temperature independent and temperature dependent voltage outputs

A voltage source includes first and second pn junctions which conduct the outputs of respective current sources to establish respective base-emitter voltages Vbe1 and Vbe2 at respective nodes; Vbe1 and Vbe2 can each be generated with a current I or a current N*I. An amplifier A1 has its non-inverting input connected to the second node and its inverting input connected to the first node through an input capacitor; a feedback capacitor is connected between the inverting input and a third node. Switches are connected between A1's inverting input and A1's output, between the third node and A1's output, and between the third node and a circuit common point. A control circuit operates the switches and current sources during first and second operating phases to selectively produce a temperature independent output voltage or a temperature dependent output voltage.
Owner:ANALOG DEVICES INC

Customer allocation method and customer allocation system

The invention discloses a customer allocation method and a customer allocation system, and belongs to the technical field of computer. The method comprises the steps as follows: acquiring the customer information of a customer registered for the first time; determining salesman information matching the customer information, wherein the salesman information is the personal information of a salesman; and allocating the customer to a salesman corresponding to the salesman information. When the salesman information matches the customer information, it is indicated that the salesman and the customer have something in common, and the salesman can communicate with the customer by taking the common point as an entry point. Therefore, the problem on how to allocate a customer to the salesman which currently has the minimum number of customers and the problem that the success rate of business promotion is low due to poor communication between a salesman and a customer are solved,and the success rate of business promotion is increased.
Owner:上海银赛计算机科技有限公司

Condensing lens, optically-multiplexed-laser-light source, and exposure system

A condensing lens is integrally formed with collimator-lens portions which respectively collimate light beams and a condensing lens portion which makes the collimated light beams converge at a common point. In addition, an optically-multiplexed-laser-light source is constituted by semiconductor lasers, a multimode optical fiber, and the above condensing lens, where the collimator-lens portions in the condensing lens are respectively arranged in correspondence with the semiconductor lasers, and the condensing lens portion couples the light beams collimated by the collimator-lens portions, to the multimode optical fiber.
Owner:ADTEC ENG +1

LED circuits and assemblies

An AC-driven LED circuit includes a first circuit having a first branch and a second branch which connect at first and second common point The common points provide input and output for an AC driving current from a driver of the circuit The first branch has first LED and second LED, the first LED being connected to second LED in opposing series relationship with the inputs of the first and second LEDs defining a first branch junction A second branch has a third LED and a fourth LED, the third LED is connected to the fourth LED in opposing series relationship with the outputs of the third and fourth LEDs defining a second branch junction Improvement in performance and scalability is provided by adding n diodes to a given basic circuit and x cross connecting circuit branch diodes and providing one or more basic circuits in series and or basic.
Owner:LYNK LABS INC

Convertible garment and container

InactiveUS20100127025A1Reducing accessibility and overall functionalityReduce the amount requiredTravelling sacksConvertible garmentEngineeringMechanical engineering
A system (20) having the form of a garment (22), such as a jacket or pullover top, which can be transformed into one of a number of different fully closable containers (24), such as a rucksack, bag, or daypack, or vice-versa and a method for performing the transformation. Closure of the neck aperture (15) is operated by actuating a first closure means (1) extending from a common point (14) below the neck on the back of the body (R) of the garment, over the shoulders on either side of the neck aperture down the front (F) of said body.
Owner:RUCKJACK CORP

Fiber coupled artificial compound eye

A multiple aperture array, wide angle imaging system incorporates compound refractive optics modeled after the eyes of insects. The system channels light through the apertures of a convex spatial filter and a pair of lenslet arrays hot press molded on a positive meniscus form. The lenslets act as afocal Keplerian telescopes to superpose light from hundreds of adjacent channels to a common point on the convex surface of a fiber optic imaging taper. The superposed light from all the channels form a curved, high intensity image that is transformed by the taper into a flat format for readout by a mosaic detector array. The image is upright and distortion free with an infinite depth of field. Ghost images are blocked by a honeycomb louver baffle positioned between the lenslets and the imaging taper. The system is conformable to the geometry of any convex mounting surface, whether spherical, aspherical, or cylindrical.
Owner:SPECTRAL IMAGING LAB
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products