Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2452 results about "Detector array" patented technology

Systems and methods for imaging large field-of-view objects

InactiveUS7108421B2Quantity minimizationAvoiding corrupted and resulting artifacts in image reconstructionMaterial analysis using wave/particle radiationRadiation/particle handlingBeam sourceX-ray
An imaging apparatus and related method comprising a source that projects a beam of radiation in a first trajectory; a detector located a distance from the source and positioned to receive the beam of radiation in the first trajectory; an imaging area between the source and the detector, the radiation beam from the source passing through a portion of the imaging area before it is received at the detector; a detector positioner that translates the detector to a second position in a first direction that is substantially normal to the first trajectory; and a beam positioner that alters the trajectory of the radiation beam to direct the beam onto the detector located at the second position. The radiation source can be an x-ray cone-beam source, and the detector can be a two-dimensional flat-panel detector array. The invention can be used to image objects larger than the field-of-view of the detector by translating the detector array to multiple positions, and obtaining images at each position, resulting in an effectively large field-of-view using only a single detector array having a relatively small size. A beam positioner permits the trajectory of the beam to follow the path of the translating detector, which permits safer and more efficient dose utilization, as generally only the region of the target object that is within the field-of-view of the detector at any given time will be exposed to potentially harmful radiation.
Owner:MEDTRONIC NAVIGATION

Apparatus for multiple camera devices and method of operating same

There are many, many inventions described herein. In one aspect, what is disclosed is a digital camera including a plurality of arrays of photo detectors, including a first array of photo detectors to sample an intensity of light of a first wavelength and a second array of photo detectors to sample an intensity of light of a second wavelength. The digital camera further may also include a first lens disposed in an optical path of the first array of photo detectors, wherein the first lens includes a predetermined optical response to the light of the first wavelength, and a second lens disposed in with an optical path of the second array of photo detectors wherein the second lens includes a predetermined optical response to the light of the second wavelength. In addition, the digital camera may include signal processing circuitry, coupled to the first and second arrays of photo detectors, to generate a composite image using (i) data which is representative of the intensity of light sampled by the first array of photo detectors, and (ii) data which is representative of the intensity of light sampled by the second array of photo detectors; wherein the first array of photo detectors, the second array of photo detectors, and the signal processing circuitry are integrated on or in the same semiconductor substrate.
Owner:NEWPORT IMAGING CORP

Digital image detector

A digital detector of a digital imaging system is provided. In one embodiment, a digital detector includes a detector array disposed in a housing and configured to generate image data based on received radiation. The digital detector may also include a battery configured to be disposed within a receptacle of the housing and to supply operating power to the detector array. In one embodiment, the battery or the detector may provide for wireless data communication. In certain embodiments, a tethered plug configured to be disposed within the receptacle may be provided. In one such embodiment, the tether may be rotatable relative to the plug. Additional systems, methods, and devices are also disclosed.
Owner:GENERAL ELECTRIC CO

Confocal imaging methods and apparatus

The invention provides imaging apparatus and methods useful for obtaining a high resolution image of a sample at rapid scan rates. A rectangular detector array having a horizontal dimension that is longer than the vertical dimension can be used along with imaging optics positioned to direct a rectangular image of a portion of a sample to the rectangular detector array. A scanning device can be configured to scan the sample in a scan-axis dimension, wherein the vertical dimension for the rectangular detector array and the shorter of the two rectangular dimensions for the image are in the scan-axis dimension, and wherein the vertical dimension for the rectangular detector array is short enough to achieve confocality in a single axis.
Owner:ILLUMINA INC

Apparatuses and methods for analyte concentration determination

Apparatuses and methods for determining the concentration of an analyte in a physiological sample are provided. The subject apparatuses include at least one light source, a detector array, means for determining whether a sufficient amount of sample is present on each of the plurality of different areas, and means for determining the concentration of the analyte based on the reflected light detected from those areas determined to have sufficient sample, where areas having insufficient sample are not used in analyte concentration determination. The subject methods include illuminating each area of a test strip, obtaining reflectance from each of the different areas, determining which areas have sufficient sample based on detected light therefrom and deriving analyte concentration from the areas determined to have sufficient sample, where areas determined not to have sufficient sample are not used in the derivation. Also provided are kits for use in practicing the subject methods.
Owner:LIFESCAN IP HLDG LLC

Virtual mouse for use in surgical navigation

A method of performing a surgery is provided including a surgical navigation system having a tracking system, computer and monitor placed outside of a sterile field. An input pad and a tracking array attachable to a surgical instrument or bone are placed into the sterile field along with a probe having a probe array. The tracking array and the probe array are acquired by the tracking system and a virtual mouse is activated by positioning the probe relative to the input pad, thereby causing a mouse input to the computer with the virtual mouse.
Owner:BIOMET MFG CORP

Systems and methods for quasi-simultaneous multi-planar x-ray imaging

Systems and methods for obtaining two-dimensional images of an object, such as a patient, in multiple projection planes. In one aspect, the invention advantageously permits quasi-simultaneous image acquisition from multiple projection planes using a single radiation source.An imaging apparatus comprises a gantry having a central opening for positioning an object to be imaged, a source of radiation that is rotatable around the interior of the gantry ring and which is adapted to project radiation onto said object from a plurality of different projection angles; and a detector system adapted to detect the radiation at each projection angle to acquire object images from multiple projection planes in a quasi-simultaneous manner. The gantry can be a substantially “O-shaped” ring, with the source rotatable 360 degrees around the interior of the ring. The source can be an x-ray source, and the imaging apparatus can be used for medical x-ray imaging. The detector array can be a two-dimensional detector, preferably a digital detector.
Owner:MEDTRONIC NAVIGATION INC

Self-calibrating, digital, large format camera with single or multiple detector arrays and single or multiple optical systems

Large format, digital camera systems (10, 100, 150, 250, 310) expose single detector arrays 20 with multiple lens systems (12, 14, 16, 18) or multiple detector arrays (104, 106, 108, 110, 112, 114, 116, 118, 120, 152, 162, 172, 182, 252, 262, 272, 282, 322, 324) with one or more single lens systems (156, 166, 176, 186) to acquire sub-images of overlapping sub-areas of large area objects. The sub-images are stitched together to form a large format, digital, macro-image (80, 230″, 236″, 238″, 240″), which can be colored. Dampened camera carrier (400) and accelerometer (404) signals with double-rate digital signal processing (306, 308) are used.
Owner:VEXCEL IMAGING US INC

Spatially corrected full-cubed hyperspectral imager

A hyperspectral imager that achieves accurate spectral and spatial resolution by using a micro-lens array as a series of field lenses, with each lens distributing a point in the image scene received through an objective lens across an area of a detector array forming a hyperspectral detector super-pixel. Spectral filtering is performed by a spectral filter array positioned at the objective lens so that each sub-pixel within a super-pixel receives light that has been filtered by a bandpass or other type filter and is responsive to a different band of the image spectrum. The micro-lens spatially corrects the focused image point to project the same image scene point onto all sub-pixels within a super-pixel.
Owner:SURFACE OPTICS

Compact spectrometer device

A color measuring sensor assembly includes an optical filter such as a linear variable filter, and an optical detector array positioned directly opposite from the optical filter a predetermined distance. A plurality of lenses, such as gradient index rods or microlens arrays, are disposed between the optical filter and the detector array such that light beams propagating through the lenses from the optical filter to the detector array project an upright, noninverted image of the optical filter onto a photosensitive surface of the detector array. The color measuring sensor assembly can be incorporated with other standard components into a spectrometer device such as a portable calorimeter having a compact and rugged construction suitable for use in the field.
Owner:VIAVI SOLUTIONS INC

Apparatus and method for reconstruction of volumetric images in a divergent scanning computed tomography system

An apparatus and method for reconstructing image data for a region are described. A radiation source and multiple one-dimensional linear or two-dimensional planar area detector arrays located on opposed sides of a region angled generally along a circle centered at the radiation source are used to generate scan data for the region from a plurality of diverging radiation beams, i.e., a fan beam or cone beam. Individual pixels on the discreet detector arrays from the scan data for the region are reprojected onto a new single virtual detector array along a continuous equiangular arc or cylinder or equilinear line or plane prior to filtering and backprojecting to reconstruct the image data.
Owner:MEDTRONIC NAVIGATION

Thin color camera

A color camera includes at least three sub-cameras, each sub-camera having an imaging lens, a color filter, and an array of detectors, The color camera combines images from the three sub-cameras to form a composite multi-color image, wherein the three sub-cameras include a total number of detectors N and a total number of different color sets X, wherein a first number of signals of a first color set is less than N / X and a second number of signals of a second color set is greater than N / X, signals of the second color set being output from at least two of the three sub-cameras, wherein resolution of a composite image of the second color set is greater than resolution of an individual sub-camera and a resolution of the composite image. Corresponding images of the same color set may be shifted, either sequentially or simultaneously, relative to one another.
Owner:DIGITALOPTICS CORPORATION

Infrared and near-infrared camera hyperframing

ActiveUS7606484B1Improved dynamic range detectionTelevision system detailsRadiation pyrometryDetector arraySuperframe
Systems and techniques for improving the dynamic range of infrared detection systems. For example, a mechanical superframing technique may comprise positioning a first filter in the optical path of an infrared camera at a first time, receiving infrared light from an object through the first filter at a detector array, acquiring first subframe image data for the object, positioning a second filter in the optical path of the infrared camera at a later time, receiving infrared light from the object through the second filter, acquiring second subframe image data for the object, and generating first superframe data based on at least some of the first subframe image data and at least some of the second subframe image data.
Owner:FLIR SYST INC

Radiation scanning of objects for contraband

A scanning unit for identifying contraband within objects, such as cargo containers and luggage, moving through the unit along a first path comprises at least one source of a beam of radiation movable across a second path that is transverse to the first path and extends partially around the first path. A stationary detector transverse to the first path also extends partially around the first path, positioned to detect radiation transmitted through the object during scanning. In one example, a plurality of movable X-ray sources are supported by a semi-circular rail perpendicular to the first path and the detector, which may be a detector array is also semi-circular and perpendicular to the path. A fan beam may also be used. Radiographic images may be obtained and / or computed tomography (“CT”) images may be reconstructed. The images may be analyzed for contraband. Methods of scanning objects are also disclosed.
Owner:VAREX IMAGING CORP

Confocal imaging methods and apparatus

The invention provides imaging apparatus and methods useful for obtaining a high resolution image of a sample at rapid scan rates. A rectangular detector array having a horizontal dimension that is longer than the vertical dimension can be used along with imaging optics positioned to direct a rectangular image of a portion of a sample to the rectangular detector array. A scanning device can be configured to scan the sample in a scan-axis dimension, wherein the vertical dimension for the rectangular detector array and the shorter of the two rectangular dimensions for the image are in the scan-axis dimension, and wherein the vertical dimension for the rectangular detector array is short enough to achieve confocality in a single axis.
Owner:ILLUMINA INC

Methods and systems for simultaneous real-time monitoring of optical signals from multiple sources

Methods and systems for real-time monitoring of optical signals from arrays of signal sources, and particularly optical signal sources that have spectrally different signal components. Systems include signal source arrays in optical communication with optical trains that direct excitation radiation to and emitted signals from such arrays and image the signals onto detector arrays, from which such signals may be subjected to additional processing.
Owner:PACIFIC BIOSCIENCES

Dynamic multi-spectral X-ray projection imaging

A multispectral X-ray imaging system uses a wideband source and filtration assembly to select for M sets of spectral data. Spectral characteristics may be dynamically adjusted in synchrony with scan excursions where an X-ray source, detector array, or body may be moved relative to one another in acquiring T sets of measurement data. The system may be used in projection imaging and / or CT imaging. Processed image data, such as a CT reconstructed image, may be decomposed onto basis functions for analytical processing of multispectral image data to facilitate computer assisted diagnostics. The system may perform this diagnostic function in medical applications and / or security applications.
Owner:FOREVISION IMAGING TECH LLC

Apparatus and method for the rapid spectral resolution of confocal images

A confocal scanning microscope apparatus and method is used to rapidly acquire spectrally resolved images. The confocal scanning microscope apparatus includes optics used to simultaneously acquire at least two points along a scan pattern on a sample plane of a sample, wherein the points include regions of the sample represented by at least two pixels. A detection arm is placed in the path of the light reflected, scattered, or emitted from the sample plane comprising a spectrometer having a slit for receiving such light and a detector array placed behind the spectrometer. The image corresponding to the at least two points is recorded on the first axis of said detector and the spectral resolution thereof is simultaneously recorded on the second axis of said detector. The confocal scanning microscope apparatus and method offers significant improvements to the current techniques for genetic sequencing, as well as significant improvements to traditional confocal scanning microscope applications.
Owner:DUKE UNIV

Simple high efficiency optical coherence domain reflectometer design

The present invention discloses simple and yet highly efficient configurations of optical coherence domain reflectometry systems. The combined use of a polarizing beam splitter with one or two polarization manipulator(s) that rotate the returned light wave polarization to an orthogonal direction, enables one to achieve high optical power delivery efficiency as well as fixed or predetermined output polarization state of the interfering light waves reaching a detector or detector array, which is especially beneficial for spectral domain optical coherence tomography. In addition, the system can be made insensitive to polarization fading resulting from the birefringence change in the sample and reference arms. Dispersion matching can also be easily achieved between the sample and the reference arm for high resolution longitudinal scanning.
Owner:CARL ZEISS MEDITEC INC

Computed tomography with increased field of view

A volumetric computed tomography system with a large field of view has, in a forward geometry implementation, multiple x-ray point sources emitting corresponding fan beams at a single detector array. The central ray of at least one of the fan beams is radially offset from the axis of rotation of the system by an offset distance D. Consequently, the diameter of the in-plane field of view provided by the fan beams may be larger than in a conventional CT scanner. Any number of point sources may be used. Analogous systems may be implemented with an inverse geometry so that a single source array emits multiple fan beams that converge upon corresponding detectors.
Owner:AIRDRIE PARTNERS I LP +1

Optical imaging of blood circulation velocities

New devices and methods are provided for noninvasive and noncontact real-time measurements of tissue blood velocity. The invention uses a digital imaging device such as a detector array that allows independent intensity measurements at each pixel to capture images of laser speckle patterns on any surfaces, such as tissue surfaces. The laser speckle is generated by illuminating the surface of interest with an expanded beam from a laser source such as a laser diode or a HeNe laser as long as the detector can detect that particular laser radiation. Digitized speckle images are analyzed using new algorithms for tissue optics and blood optics employing multiple scattering analysis and laser Doppler velocimetry analysis. The resultant two-dimensional images can be displayed on a color monitor and superimposed on images of the tissues.
Owner:WINTEC LLC

Magnetic nanoparticles, magnetic detector arrays, and methods for their use in detecting biological molecules

Magnetic nanoparticles and methods for their use in detecting biological molecules are disclosed. The magnetic nanoparticles can be attached to nucleic acid molecules, which are then captured by a complementary sequence attached to a detector, such as a spin valve detector or a magnetic tunnel junction detector. The detection of the bound magnetic nanoparticle can be achieved with high specificity and sensitivity.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV

Hybrid infrared detector array and CMOS readout integrated circuit with improved dynamic range

A hybrid image sensor includes an infrared detector array and a CMOS readout integrated circuit (ROIC). The CMOS ROIC is coupled to at least one detector of the IR detector array, e.g., via indium bump bonding. Each pixel of the CMOS ROIC includes a first, relatively lower gain, wide dynamic range amplifier circuit which is optimized for a linear response to high light level input signals from the IR detector. Each pixel also includes a second, relatively higher gain, lower dynamic range amplifier circuit which is optimized to provide a high signal to noise ratio for low light level input signals from the IR detector (or from a second IR detector). A first output select circuit is provided for directing the output of the first circuit to a first output multiplexer. A second output select circuit is provided for directing the output of the second circuit to a second output multiplexer. Thus, separate outputs of the first and second circuits are provided for each of the individual pixel sensors of the CMOS imaging array.
Owner:THE BF GOODRICH CO

Self-calibrating, digital, large format camera with single or mulitiple detector arrays and single or multiple optical systems

Large format, digital camera systems (10, 100, 150, 250, 310) expose single detector arrays 20 with multiple lens systems (12, 14, 16, 18) or multiple detector arrays (104, 106, 108, 110, 112, 114, 116, 118, 120, 152, 162, 172, 182, 252, 262, 272, 282, 322, 324) with one or more single lens systems (156, 166, 176, 186) to acquire sub-images of overlapping sub-areas of large area objects. The sub-images are stitched together to form a large format, digital, macro-image (80, 230'', 236'', 238'', 240''), which can be colored. Dampened camera carrier (400) and accelerometer (404) signals with double-rate digital signal processing (306, 308) are used.
Owner:VEXCEL IMAGING US INC

Imaging of biological samples using electronic light detector

A system and method using an electronic light detector array, e.g., a CCD or a CMOS-based detector array, is used to acquire a visual image of a biological sample that includes biological material associated with a biological material holding structure (e.g., a DNA spot array on a DNA chip, protein bands in a 2-D gel, etc.). For example, fluorescence from a biological sample may be detected.
Owner:RGT UNIV OF MINNESOTA

Spatially corrected full-cubed hyperspectral imager

A hyperspectral imager that achieves accurate spectral and spatial resolution by using a micro-lens array as a series of field lenses, with each lens distributing a point in the image scene received through an objective lens across an area of a detector array forming a hyperspectral detector super-pixel. Each sub-pixel within a super-pixel has a bandpass or other type filter to pass a different band of the image spectrum. The micro-lens spatially corrects the focused image point to project the same image scene point onto all sub-pixels within a super-pixel. A color separator can be used to split the image into sub-bands, with each sub-band image projected onto a different spatially corrected detector array. A shaped limiting aperture can be used to isolate the image scene point within each super-pixels and minimize energy coupling to adjacent super-pixels.
Owner:SURFACE OPTICS

Cross-dispersed spectrometer in a spectral domain optical coherence tomography system

A spectral-domain optical coherence tomography system using a cross-dispersed spectrometer is disclosed. The interfered optical signal is dispersed by a grating into several orders of diffraction, and these orders of diffraction are separated by an additional dispersive optical element. The spectral interferogram is recorded by a set of linear detector arrays, or by a two-dimensional detector array.
Owner:CARL ZEISS MEDITEC INC

Methods and devices for generating a representation of a 3D scene at very high speed

The present invention relates to a 3D landscape real-time imager. It also relates to methods for operating such an imager. Such an imager comprises: —at least one illuminating part which is designed to scan at least a portion of the landscape at a given range and having an ultra-short laser pulse source emitting at least one wavelength, and an optical rotating block, with a vertical axis of rotation, and controlled such that given packets of pulses are shaped in a pattern of rotating beams sent toward the said at least partial landscape; —at least one receiving part which comprises a set of SPAD detector arrays, each arranged along a vertical direction and rotating at a given speed in synchronism with the optical rotating block of the illuminating part, the detection data of the SPAD detector arrays being combined to acquire 3D imaging data of the said at least partial landscape in a central controller.
Owner:FASTREE3D

Single boom cargo scanning system

InactiveUS7322745B2Rapidly deployableCost-effectively and accurately on uneven surfaceRadiation/particle handlingParticle suspension analysisMobile vehicleDetector array
The inspection methods and systems of the present invention are mobile, rapidly deployable, and capable of scanning a wide variety of receptacles cost-effectively and accurately on uneven surfaces. The present invention is directed toward a portable inspection system for generating an image representation of target objects using a radiation source, comprising a mobile vehicle, a detector array physically attached to a movable boom having a proximal end and a distal end. The proximal end is physically attached to the vehicle. The invention also comprises at least one source of radiation. The radiation source is fixedly attached to the distal end of the boom, wherein the image is generated by introducing the target objects in between the radiation source and the detector array, exposing the objects to radiation, and detecting radiation.
Owner:RAPISCAN SYST INC (US)
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products