Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

4527 results about "Soft x ray" patented technology

X-ray microscopic analysis, which uses electromagnetic radiation in the soft X-ray band to produce images of very small objects. X-ray fluorescence, a technique in which X-rays are generated within a specimen and detected. The outgoing energy of the X-ray can be used to identify the composition of the sample.

Breakable gantry apparatus for multidimensional x-ray based imaging

An x-ray scanning imaging apparatus with a generally O-shaped gantry ring, which has a segment that fully or partially detaches (or “breaks”) from the ring to provide an opening through which the object to be imaged may enter interior of the ring in a radial direction. The segment can then be re-attached to enclose the object within the gantry. Once closed, the circular gantry housing remains orbitally fixed and carries an x-ray image-scanning device that can be rotated inside the gantry 360 degrees around the patient either continuously or in a step-wise fashion. The x-ray device is particularly useful for two-dimensional and / or three-dimensional computed tomography (CT) imaging applications.
Owner:MEDTRONIC NAVIGATION INC

Cantilevered gantry apparatus for x-ray imaging

An x-ray scanning imaging apparatus with a rotatably fixed generally O-shaped gantry ring, which is connected on one end of the ring to support structure, such as a mobile cart, ceiling, floor, wall, or patient table, in a cantilevered fashion. The circular gantry housing remains rotatably fixed and carries an x-ray image-scanning device that can be rotated inside the gantry around the object being imaged either continuously or in a step-wise fashion. The ring can be connected rigidly to the support, or can be connected to the support via a ring positioning unit that is able to translate or tilt the gantry relative to the support on one or more axes. Multiple other embodiments exist in which the gantry housing is connected on one end only to the floor, wall, or ceiling. The x-ray device is particularly useful for two-dimensional multi-planar x-ray imaging and / or three-dimensional computed tomography (CT) imaging applications
Owner:MEDTRONIC NAVIGATION INC

Systems and methods for quasi-simultaneous multi-planar x-ray imaging

Systems and methods for obtaining two-dimensional images of an object, such as a patient, in multiple projection planes. In one aspect, the invention advantageously permits quasi-simultaneous image acquisition from multiple projection planes using a single radiation source.An imaging apparatus comprises a gantry having a central opening for positioning an object to be imaged, a source of radiation that is rotatable around the interior of the gantry ring and which is adapted to project radiation onto said object from a plurality of different projection angles; and a detector system adapted to detect the radiation at each projection angle to acquire object images from multiple projection planes in a quasi-simultaneous manner. The gantry can be a substantially “O-shaped” ring, with the source rotatable 360 degrees around the interior of the ring. The source can be an x-ray source, and the imaging apparatus can be used for medical x-ray imaging. The detector array can be a two-dimensional detector, preferably a digital detector.
Owner:MEDTRONIC NAVIGATION INC

Method of and device for position detection in X-ray imaging

The invention relates to a method of position detection in X-ray imaging, and to a device for carrying out such a method by means of an X-ray apparatus, a detector device, including at least two detector elements, and an indicator device. The exact association of the X-ray image with the object imaged is very important notably for intraoperative imaging. Exact knowledge of the position and orientation of the components of the X-ray apparatus associated with the imaging system is required for this purpose. However, it is often problematic that the lines of sight of the position measuring system are obscured by attending staff or other apparatus. Therefore, in the device according to the invention the detector device is mounted on the X-ray apparatus and the indicator device is provided so as to be stationary on the object to be examined or stationary relative to the object to be examined. Also described is a method of position detection in X-ray imaging by means of such a device.
Owner:U S PHILIPS CORP

System and method for x-ray fluoroscopic imaging

A system for x-ray fluoroscopic imaging of bodily tissue in which a scintillation screen and a charge coupled device (CCD) is used to accurately image selected tissue. An x-ray source generates x-rays which pass through a region of a subject's body, forming an x-ray image which reaches the scintillation screen. The scintillation screen re-radiates a spatial intensity pattern corresponding to the image, the pattern being detected by the CCD sensor. In a preferred embodiment the imager uses four 8×8-cm three-side buttable CCDs coupled to a CsI:T1 scintillator by straight (non-tapering) fiberoptics and tiled to achieve a field of view (FOV) of 16×16-cm at the image plane. Larger FOVs can be achieved by tiling more CCDs in a similar manner. The imaging system can be operated in a plurality of pixel pitch modes such as 78, 156 or 234-μm pixel pitch modes. The CCD sensor may also provide multi-resolution imaging. The image is digitized by the sensor and processed by a controller before being stored as an electronic image. Other preferred embodiments may include each image being directed on flat panel imagers made from but not limited to, amorphous silicon and / or amorphous selenium to generate individual electronic representations of the separate images used for diagnostic or therapeutic applications.
Owner:UNIV OF MASSACHUSETTS MEDICAL CENT

Patient positioning device and patient positioning method

The invention is intended to always ensure a sufficient level of patient positioning accuracy regardless of the skills of individual operators. In a patient positioning device for positioning a patient couch 59 and irradiating an ion beam toward a tumor in the body of a patient 8 from a particle beam irradiation section 4, the patient positioning device comprises an X-ray emission device 26 for emitting an X-ray along a beam line m from the particle beam irradiation section 4, an X-ray image capturing device 29 for receiving the X-ray and processing an X-ray image, a display unit 39B for displaying a current image of the tumor in accordance with a processed image signal, a display unit 39A for displaying a reference X-ray image of the tumor which is prepared in advance, and a positioning data generator 37 for executing pattern matching between a comparison area A being a part of the reference X-ray image and including an isocenter and a comparison area B or a final comparison area B in the current image, thereby producing data used for positioning of the patient couch 59 during irradiation.
Owner:HITACHI LTD

Patient positioning device and patient positioning method

The invention is intended to always ensure a sufficient level of patient positioning accuracy regardless of the skills of individual operators. In a patient positioning device for positioning a patient couch 59 and irradiating an ion beam toward a tumor in the body of a patient 8 from a particle beam irradiation section 4, the patient positioning device comprises an X-ray emission device 26 for emitting an X-ray along a beam line m from the particle beam irradiation section 4, an X-ray image capturing device 29 for receiving the X-ray and processing an X-ray image, a display unit 39B for displaying a current image of the tumor in accordance with a processed image signal, a display unit 39A for displaying a reference X-ray image of the tumor which is prepared in advance, and a positioning data generator 37 for executing pattern matching between a comparison area A being a part of the reference X-ray image and including an isocenter and a comparison area B or a final comparison area B in the current image, thereby producing data used for positioning of the patient couch 59 during irradiation.
Owner:HITACHI LTD

X-ray computed tomography apparatus

An X-ray computed tomography apparatus includes a first X-ray tube configured to generate X-rays with which a subject to be examined is irradiated, a first X-ray detector configured to detect X-rays transmitted through the subject, a second X-ray tube which generates X-rays with which a treatment target of the subject is irradiated, a rotating mechanism which rotates the first X-ray tube, the first X-ray detector, and the second X-ray tube around the subject, a reconstructing unit configured to reconstruct an image on the basis of data detected by the first X-ray detector, and a support mechanism which supports the second X-ray tube. The central axis of X-rays from the second X-ray tube tilts with respect to a body axis of the subject. This makes it possible to reduce the dose on a portion other than a treatment target.
Owner:TOSHIBA MEDICAL SYST CORP

Apparatus and method for cone beam volume computed tomography breast imaging

Cone beam volume CT breast imaging is performed with a gantry frame on which a cone-beam radiation source and a digital area detector are mounted. The patient rests on an ergonomically designed table with a hole or two holes to allow one breast or two breasts to extend through the table such that the gantry frame surrounds that breast. The breast hole is surrounded by a bowl so that the entire breast can be exposed to the cone beam. Spectral and compensation filters are used to improve the characteristics of the beam. A materials library is used to provide x-ray linear attenuation coefficients for various breast tissues and lesions.
Owner:UNIVERSITY OF ROCHESTER

X-ray ambient level safety system

A method for modulating the intensity of an x-ray beam in an x-ray inspection system so as to maintain the highest penetration power and optimum image quality subject to keeping the ambient radiation generated by the x-rays below a specified standard.
Owner:SILICON VALLEY BANK

Method and apparatus for generating high output power gas discharge based source of extreme ultraviolet radiation and/or soft x-rays

An EUV photon source includes a plasma chamber filled with a gas mixture, multiple electrodes within the plasma chamber defining a plasma region and a central axis, a power supply circuit connected to the electrodes for delivering a main pulse to the electrodes for energizing the plasma around the central axis to produce an EUV beam output along the central axis, and a preionizer for ionizing the gas mixture in preparing to form a dense plasma around the central axis upon application of the main pulse from the power supply circuit to the electrodes. The EUV source preferably includes an ionizing unit and precipitator for collecting contaminant particulates from the output beam path. A set of baffles may be disposed along the beam path outside of the pinch region to diffuse gaseous and contaminant particulate flow emanating from the pinch region and to absorb or reflect acoustic waves emanating from the pinch region away from the pinch region. A clipping aperture, preferably formed of ceramic and / or Al2O3, for at least partially defining an acceptance angle of the EUV beam. The power supply circuit may generates the main pulse and a relatively low energy prepulse for homogenizing the preionized plasma prior to the main pulse. A multi-layer EUV mirror is preferably disposed opposite a beam output side of the pinch region for reflecting radiation along the central axis for output along the beam path of the EUV beam. The EUV mirror preferably has a curved contour for substantially collimating or focusing the reflected radiation. In particular, the EUV mirror may preferably have a hyperbolic contour.
Owner:USHIO DENKI KK

Service unit for an X-ray examining device

Disclosed is a uniquely identifiable identification system incorporated into an X-ray testing apparatus or into this system, so that each operator (6) can log onto the operating system only with his or her own individual identification (4, 4.1). The identification (4, 4.1) is read and optionally rewritten by a counterpart device (3, 3.1) of the identification system. Upon leaving the operating system, the operator (6) is automatically logged off by way of removing the identification device (4, 4.1), or by way of exiting from a defined local area (N) around the X-ray testing apparatus, and the operating system is then ready for access by another operator (6).
Owner:SMITHS HEIMANN

X-ray imaging with X-ray markers that provide adjunct information but preserve image quality

A method and an apparatus for estimating a geometric thickness of a breast in mammography / tomosynthesis or in other x-ray procedures, by imaging markers that are in the path of x-rays passing through the imaged object. The markings can be selected to be visible or to be invisible when the composite markings / breast image is viewed in clinical settings. If desired, the contribution of the markers to the image can be removed through further processing. The resulting information can be used determining the geometric thickness of the body being x-rayed and thus setting imaging parameters that are thickness-related, and for other purposes. The method and apparatus also have application in other types of x-ray imaging.
Owner:HOLOGIC INC

Multi-energy x-ray source

An apparatus for use in a radiation procedure includes a radiation filter having a first portion and a second portion, the first and the second portions forming a layer for filtering radiation impinging thereon, wherein the first portion is made from a first material having a first x-ray filtering characteristic, and the second portion is made from a second material having a second x-ray filtering characteristic. An apparatus for use in a radiation procedure includes a first target material, a second target material, and an accelerator for accelerating particles towards the first target material and the second target material to generate x-rays at a first energy level and a second energy level, respectively.
Owner:VARIAN MEDICAL SYSTEMS

Multi-parameter X-ray computed tomography

The present invention relates to the field of x-ray imaging. More particularly, embodiments of the invention relate to methods, systems, and apparatus for imaging, which can be used in a wide range of applications, including medical imaging, security screening, and industrial non-destructive testing to name a few. Specifically provided as embodiments of the invention are systems for x-ray imaging comprising: a) a first collimator-and-detector assembly having a first operable configuration to provide at least one first dataset comprising primary x-ray signals as a majority component of its data capable of being presented as a first image of an object subjected to x-ray imaging; b) a second collimator-and-detector assembly having a second operable configuration or wherein the first collimator-and-detector assembly is adjustable to a second configuration to provide at least one second dataset comprising primary and dark-field x-ray signals as a majority component of its data capable of being presented as a second image of the object; and c) a computer operably coupled with the collimator-and-detector assemblies comprising a computer readable medium embedded with processing means for combining the first dataset and the second dataset to extract the dark-field x-ray signals and produce a target image having higher contrast quality than the images based on the first or second dataset alone. Such systems can be configured to comprise at least two collimator-and-detector assemblies or configurations differing with respect to collimator height, collimator aperture, imaging geometry, or distance between an object subjected to the imaging and the collimator-and-detector assembly.
Owner:VIRGINIA TECH INTPROP INC

Synchronized x-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system

The invention comprises an X-ray system that is orientated to provide X-ray images of a patient in the same orientation as viewed by a proton therapy beam, is synchronized with patient respiration, is operable on a patient positioned for proton therapy, and does not interfere with a proton beam treatment path. Preferably, the synchronized system is used in conjunction with a negative ion beam source, synchrotron, and / or targeting method apparatus to provide an X-ray timed with patient respiration and performed immediately prior to and / or concurrently with particle beam therapy irradiation to ensure targeted and controlled delivery of energy relative to a patient position resulting in efficient, precise, and / or accurate noninvasive, in-vivo treatment of a solid cancerous tumor with minimization of damage to surrounding healthy tissue in a patient using the proton beam position verification system.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

X-ray device having a dilation structure for delivering localized radiation to an interior of a body

Generally, the present invention provides a device for insertion into a body of a subject being treated to deliver localized x-ray radiation, and a method for use of such a device. The device includes an anode and a cathode, disposed within a vacuum housing. The device further includes a balloon coupled to and circumferentially surrounding the vacuum housing, and a fluid loop for circulating a cooling fluid proximate to the vacuum housing. A method for delivering localized x-ray radiation to an interior passage of a body is also described, including the steps of positioning an x-ray device at the passage to be treated and applying a high voltage to the x-ray producing unit to produce localized x-ray radiation.
Owner:MEDTRONIC AVE

X-ray device

The invention relates to an X-ray device, in which an X-ray source and an X-ray detector are attached, in an opposed arrangement oriented toward a rotational axis, to a common holder capable of rotating about the rotational axis. To simplify the design of the X-ray device, it is proposed that the holder is attached to the hand of a robot displaying six axes of rotation.
Owner:SIEMENS HEALTHCARE GMBH

Large-area individually addressable multi-beam x-ray system and method of forming same

A structure to generate x-rays has a plurality of stationary and individually electrically addressable field emissive electron sources with a substrate composed of a field emissive material, such as carbon nanotubes. Electrically switching the field emissive electron sources at a predetermined frequency field emits electrons in a programmable sequence toward an incidence point on a target. The generated x-rays correspond in frequency and in position to that of the field emissive electron source. The large-area target and array or matrix of emitters can image objects from different positions and / or angles without moving the object or the structure and can produce a three dimensional image. The x-ray system is suitable for a variety of applications including industrial inspection / quality control, analytical instrumentation, security systems such as airport security inspection systems, and medical imaging, such as computed tomography.
Owner:THE UNIV OF NORTH CAROLINA AT CHAPEL HILL

Elongated lifetime x-ray method and apparatus used in conjunction with a charged particle cancer therapy system

The system uses an X-ray imaging system having an elongated lifetime. Further, the system uses an X-ray beam that lies in substantially the same path as a charged particle beam path of a particle beam cancer therapy system. The system creates an electron beam that strikes an X-ray generation source located proximate to the charged particle beam path. By generating the X-rays near the charged particle beam path, an X-ray path running collinear, in parallel with, and / or substantially in contact with the charged particle beam path is created. The system then collects X-ray images of localized body tissue region about a cancerous tumor. Since, the X-ray path is essentially the charged particle beam path, the generated image is usable for precisely target the tumor with a charged particle beam.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

X-ray labeling tape

A marking tape for transferring information written thereon to a film when the film is exposed to x-rays. The tape is a laminate of an upper film, a radiopaque emulsion, and a lower film. The top surface of the upper film is partially coated with a writable ink, and the ink coating positioned directly over the radiopaque emulsion. Pressure exerted by the user while writing on the ink surface causes the underlying emulsion to part. When the marking tape is affixed to a film cassette, x-rays penetrate the marking tape in those areas where the emulsion has been parted, the underlying film is exposed, and the information entered on the marking tape is thereby transferred to the film. The marking tape can be made in different sizes and radiopacities that can be distinguished by color-coding the writable surface.
Owner:DESENA DANFORTH

Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system

The invention comprises an X-ray system that is orientated to provide X-ray images of a patient in the same orientation as viewed by a proton therapy beam, is synchronized with patient respiration, is operable on a patient positioned for proton therapy, and does not interfere with a proton beam treatment path. Preferably, the synchronized system is used in conjunction with a negative ion beam source, synchrotron, and / or targeting method apparatus to provide an X-ray timed with patient respiration and performed immediately prior to and / or concurrently with particle beam therapy irradiation to ensure targeted and controlled delivery of energy relative to a patient position resulting in efficient, precise, and / or accurate noninvasive, in-vivo treatment of a solid cancerous tumor with minimization of damage to surrounding healthy tissue in a patient using the proton beam position verification system.
Owner:BALAKIN ANDREY VLADIMIROVICH +1

Apparatus for asymmetric dual-screen digital radiography

The present invention relates to radiographic imaging apparatus for taking X-ray images of an object. In various two-panel radiographic imaging apparatus configurations, a front panel and back panel have substrates, arrays of signal sensing elements and readout devices, and passivation layers. The front and back panels have scintillating phosphor layers responsive to X-rays passing through an object produce light which illuminates the signal sensing elements to provide signals representing X-ray images. The X-ray apparatus has means for combining the signals of the X-ray images to produce a composite X-ray image. Furthermore, the composition and thickness of the scintillating phosphor layers are selected, relative to each other, to improve the diagnostic efficacy of the composite X-ray image. Alternatively, a radiographic imaging apparatus has a single panel having arrays of signal sensing elements and readout devices and scintillating phosphor layers that are disposed on both sides of a single substrate. The present invention further relates to various embodiments of indirect dual-screen DR flat-panel imager apparatus that provide single-exposure dual energy imaging.
Owner:CARESTREAM HEALTH INC

Wavelength dispersive XRF system using focusing optic for excitation and a focusing monochromator for collection

X-ray fluorescence (XRF) spectroscopy systems and methods are provided. One system includes a source of x-ray radiation and an excitation optic disposed between the x-ray radiation source and the sample for collecting x-ray radiation from the source and focusing the x-ray radiation to a focal point on the sample to incite at least one analyte in the sample to fluoresce. The system further includes an x-ray fluorescence detector and a collection optic comprising a doubly curved diffracting optic disposed between the sample and the x-ray fluorescence detector for collecting x-ray fluorescence from the focal point on the sample and focusing the fluorescent x-rays towards the x-ray fluorescence detector.
Owner:X-RAY OPTICAL SYSTEM INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products