Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

6515 results about "Halide" patented technology

A halide is a binary phase, of which one part is a halogen atom and the other part is an element or radical that is less electronegative (or more electropositive) than the halogen, to make a fluoride, chloride, bromide, iodide, astatide, or theoretically tennesside compound. The alkali metals combine directly with halogens under appropriate conditions forming halides of the general formula, MX (X = F, Cl, Br or I). Many salts are halides; the hal- syllable in halide and halite reflects this correlation. All Group 1 metals form halides that are white solids at room temperature.

Precursor source mixtures

A precursor source mixture useful for CVD or ALD of a film comprising: at least one precursor composed of an element selected from the group consisting of Li, Na, K, Rb, Cs, Fr, Be, Mg, Ti, Zr, Hf, Sc, Y, La, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, As, P, Sb and Bi, to which is bound at least one ligand selected from the group consisting of hydride, alkyl, alkenyl, cycloalkenyl, aryl, alkyne, carbonyl, amido, imido, hydrazido, phosphido, nitrosyl, nitryl, nitrate, nitrile, halide, azide, alkoxy, siloxy, silyl, and halogenated, sulfonated or silyated derivatives thereof, which is dissolved, emulsified or suspended in an inert liquid selected from the group consisting of aliphatic hydrocarbons, aromatic hydrocarbons, alcohols, ethers, aldehydes, ketones, acids, phenols, esters, amines, alkylnitrile, halogenated hydrocarbons, silyated hydrocarbons, thioethers, amines, cyanates, isocyanates, thiocyanates, silicone oils, nitroalkyl, alkylnitrate, and mixtures thereof. The precursor source mixture may be a solution, emulsion or suspension and may consist of a mixture of solid, liquid and gas phases which are distributed throughout the mixture.
Owner:GLOBALFOUNDRIES INC

Modified hyaluronic acid for use in musculoskeletal tissue repair

The present invention includes hyaluronic acid complexes of a monovalent alkali metal salt of hyaluronic acid and a tetra alkyl ammonium halide that are suitable for incorporation with tissue scaffolds that are suitable for use in repair and / or regeneration of muscoloskeletal tissue and that include a biodegradable, porous substrate made from a biodegradable, hydrophobic polymer, where the hyaluronic acid complex is substantially insoluble in water at room temperature, yet soluble in mixtures of organic and aqueous solvents in which the selected hydrophobic polymer is soluble.
Owner:ADVANCED TECH & REGENERATIVE MEDICINE

Enhanced thin film deposition

Methods of producing metal-containing thin films with low impurity contents on a substrate by atomic layer deposition (ALD) are provided. The methods preferably comprise contacting a substrate with alternating and sequential pulses of a metal source chemical, a second source chemical and a deposition enhancing agent. The deposition enhancing agent is preferably selected from the group consisting of hydrocarbons, hydrogen, hydrogen plasma, hydrogen radicals, silanes, germanium compounds, nitrogen compounds, and boron compounds. In some embodiments, the deposition-enhancing agent reacts with halide contaminants in the growing thin film, improving film properties.
Owner:ASM INTERNATIONAL

Process for preparing olefin polymerization ball type catalytic component and carrier

InactiveCN1463990AElectron donorX-ray
The spherical catalyst carrier is prepared with alcoholated magnesium chloride containing double-ether compound in emulsifying pelletizer. Liquid titanium halide compound is carried onto the spherical catalyst carrier to form spherical solid catalyst component in the presence of electron donor. In the X-ray diffraction spectrogram, the spherical solid catalyst component has diffraction peak in 13.3 deg of 2theta angle, strongest diffraction peak in 26.5 deg of 2theta angle and no characteristic diffraction peak of alpha-anhydrous MgCl2 in 15 deg of 2theta angle. The catalyst of the presentinvention has very high activity and may be used to produce polymer with good form, high apparent density and less fine powder. The catalyst is used in homopolymerization and copolymerization of olefin and suitable for various polymerization process.
Owner:YINGKOU XIANGYANG CATALYST

Method for Forming Insulation Film Using Non-Halide Precursor Having Four or More Silicons

A method of forming an insulation film on a semiconductor substrate by plasma enhanced atomic layer deposition (PEALD), includes: (i) adsorbing a non-excited non-halide precursor having four or more silicon atoms in its molecule onto a substrate placed in a reaction space; (ii) supplying an oxygen-free reactant to the reaction space without applying RF power so as to expose the precursor-adsorbed substrate to the reactant; and (iii) after step (ii), applying RF power to the reaction space while the oxygen-free reactant is supplied in the reaction space; and (iv) repeating steps (i) to (iii) as a cycle, thereby depositing an insulation film on the substrate.
Owner:ASM IP HLDG BV

Low zirconium hafnium halide compositions

This invention relates to hafnium halide compositions having a zirconium concentration of less than about 1000 parts per million, a process for producing the hafnium halide compositions having a zirconium concentration of less than about 1000 parts per million, organometallic compound precursors, a process for producing the organometallic compound precursors, and a method for producing a film or coating from the organometallic compound precursors. The organometallic compounds are useful in semiconductor applications as chemical vapor or atomic layer deposition precursors for film depositions.
Owner:PRAXAIR INC

Method for forming insulation film using non-halide precursor having four or more silicons

A method of forming an insulation film on a semiconductor substrate by plasma enhanced atomic layer deposition (PEALD), includes: (i) adsorbing a non-excited non-halide precursor having four or more silicon atoms in its molecule onto a substrate placed in a reaction space; (ii) supplying an oxygen-free reactant to the reaction space without applying RF power so as to expose the precursor-adsorbed substrate to the reactant; and (iii) after step (ii), applying RF power to the reaction space while the oxygen-free reactant is supplied in the reaction space; and (iv) repeating steps (i) to (iii) as a cycle, thereby depositing an insulation film on the substrate.
Owner:ASM IP HLDG BV

Plasma-enhanced ald of tantalum nitride films

Methods of controllably producing conductive tantalum nitride films are provided. The methods comprise contacting a substrate in a reaction space with alternating and sequential pulses of a tantalum source material, plasma-excited species of hydrogen and nitrogen source material. The plasma-excited species of hydrogen reduce the oxidation state of tantalum, thereby forming a substantially conductive tantalum nitride film over the substrate. In some embodiments, the plasma-excited species of hydrogen react with and removes halide residues in a deposited metallic film.
Owner:ASM IP HLDG BV

ALD of metal silicate films

Methods for forming metal silicate films are provided. The methods comprise contacting a substrate with alternating and sequential vapor phase pulses of a metal source chemical, a silicon source chemical and an oxidizing agent. In preferred embodiments, an alkyl amide metal compound and a silicon halide compound are used. Methods according to preferred embodiments can be used to form hafnium silicate and zirconium silicate films with substantially uniform film coverages on substrate surfaces comprising high aspect ratio features (e.g., vias and / or trenches).
Owner:ASM IP HLDG BV

Metal nitride deposition by ALD with reduction pulse

The present methods provide tools for growing conformal metal thin films, including metal nitride, metal carbide and metal nitride carbide thin films. In particular, methods are provided for growing such films from aggressive chemicals. The amount of corrosive chemical compounds, such as hydrogen halides, is reduced during the deposition of transition metal, transition metal carbide, transition metal nitride and transition metal nitride carbide thin films on various surfaces, such as metals and oxides. Getter compounds protect surfaces sensitive to hydrogen halides and ammonium halides, such as aluminum, copper, silicon oxide and the layers being deposited, against corrosion. Nanolaminate structures incorporating metallic thin films, and methods for forming the same, are also disclosed.
Owner:ASM INTERNATIONAL

FORMATION OF SiN THIN FILMS

Methods of forming silicon nitride thin films on a substrate in a reaction space under high pressure are provided. The methods can include a plurality of plasma enhanced atomic layer deposition (PEALD) cycles, where at least one PEALD deposition cycle comprises contacting the substrate with a nitrogen plasma at a process pressure of 20 Torr to 500 Torr within the reaction space. In some embodiments the silicon precursor is a silyly halide, such as H2SiI2. In some embodiments the processes allow for the deposition of silicon nitride films having improved properties on three dimensional structures. For example, such silicon nitride films can have a ratio of wet etch rates on the top surfaces to the sidewall of about 1:1 in dilute HF.
Owner:ASM IP HLDG BV

Cationic antiseptic compositions and methods of use

ActiveUS20060051385A1Reduce eliminateReduce and eliminate clinical signAntibacterial agentsBiocideAmmonium compoundsCetylpyridinium
Antimicrobial compositions, especially those useful when applied topically, particularly to mucosal tissues (i.e., mucous membranes), including a cationic antiseptic such as biguanides and bisbiguanides such as chlorhexidine and its various salts including but not limited to the digluconate, diacetate, dimethosulfate, and dilactate salts; polymeric quaternary ammonium compounds such as polyhexamethylenebiguanide; silver and various silver complexes; small molecule quaternary ammonium compounds such as benzalkoium chloride and alkyl substituted derivatives; di-long chain alkyl (C8-C18) quaternary ammonium compounds; cetylpyridinium halides and their derivatives; benzethonium chloride and its alkyl substituted derivatives; and octenidine. The compositions can also include an enhancer component, a surfactant, a hydrophobic component, and / or a hydrophilic component. Such compositions provide effective topical antimicrobial activity and are accordingly useful in the treatment and / or prevention of conditions that are caused, or aggravated by, microorganisms (including viruses).
Owner:3M INNOVATIVE PROPERTIES CO

Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures

Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process are disclosed. The methods may include: providing a substrate comprising a dielectric surface into a reaction chamber; depositing a nucleation film directly on the dielectric surface; and depositing a molybdenum metal film directly on the nucleation film, wherein depositing the molybdenum metal film includes: contacting the substrate with a first vapor phase reactant comprising a molybdenum halide precursor; and contacting the substrate with a second vapor phase reactant comprising a reducing agent precursor. Semiconductor device structures including a molybdenum metal film disposed over a surface of a dielectric material with an intermediate nucleation film are also disclosed.
Owner:ASM IP HLDG BV

Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures

A method for selectively forming a silicon nitride film on a substrate comprising a first metallic surface and a second dielectric surface by a cyclical deposition process is disclosed. The method may comprise contacting the substrate with a first reactant comprising a silicon halide source and contacting the substrate with a second reactant comprising a nitrogen source, wherein the incubation period for the first metallic surface is less than the incubation period for the second dielectric surface. Semiconductor device structures comprising a selective silicon nitride film are also disclosed.
Owner:ASM IP HLDG BV

Methods for forming a silicon nitride film on a substrate and related semiconductor device structures

A method for forming a silicon nitride film on a substrate is disclosed. The method may include; forming a cyclical silicon nitride film on the substrate by a cyclical deposition process, wherein the cyclical deposition process comprises at least one of; contacting the substrate with a first reactant comprising a silicon halide source and contacting the substrate with a second reactant comprising a nitrogen source. The method may also include exposing the cyclical silicon nitride film to a plasma. Semiconductor device structures comprising a silicon nitride film are also disclosed.
Owner:ASM IP HLDG BV

Method of atomic layer etching using hydrogen plasma

A method for etching a target layer on a substrate by a dry etching process includes at least one etching cycle, wherein an etching cycle includes: depositing a carbon halide film using reactive species on the target layer on the substrate; and etching the carbon halide film using a plasma of a non-halogen hydrogen-containing etching gas, which plasma alone does not substantially etch the target layer, thereby generating a hydrogen halide as etchant species at a boundary region of the carbon halide film and the target layer, thereby etching a portion of the target layer in the boundary region.
Owner:ASM IP HLDG BV

Methods for forming a semiconductor device structure and related semiconductor device structures

Methods for forming a semiconductor device structure are provided. The methods may include forming a molybdenum nitride film on a substrate by atomic layer deposition by contacting the substrate with a first vapor phase reactant comprising a molybdenum halide precursor, contacting the substrate with a second vapor phase reactant comprise a nitrogen precursor, and contacting the substrate with a third vapor phase reactant comprising a reducing precursor. The methods provided may also include forming a gate electrode structure comprising the molybdenum nitride film, the gate electrode structure having an effective work function greater than approximately 5.0 eV. Semiconductor device structures including molybdenum nitride films are also provided.
Owner:ASM IP HLDG BV

Methods for depositing a molybdenum metal film on a dielectric surface of a substrate and related semiconductor device structures

Methods for depositing a molybdenum metal film directly on a dielectric material surface of a substrate by a cyclical deposition process are disclosed. The methods may include: providing a substrate comprising a dielectric surface into a reaction chamber; and depositing a molybdenum metal film directly on the dielectric surface, wherein depositing comprises: contacting the substrate with a first vapor phase reactant comprising a molybdenum halide precursor; and contacting the substrate with a second vapor phase reactant comprising a reducing agent precursor. Semiconductor device structures including a molybdenum metal film disposed directly on a surface of a dielectric material deposited by the methods of the disclosure are also disclosed.
Owner:ASM IP HLDG BV

Method for selectively depositing a group iv semiconductor and related semiconductor device structures

A method for selectively depositing a Group IV semiconductor on a surface of a substrate is disclosed. The method may include, providing a substrate within a reaction chamber and heating the substrate to a deposition temperature. The method may further include, exposing the substrate to at least one Group IV precursor, and exposing the substrate to at least one Group IIIA halide dopant precursor. Semiconductor device structures including a Group IV semiconductor deposited by the methods of the disclosure are also provided.
Owner:ASM IP HLDG BV

Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus

A method of forming a transition metal containing films on a substrate by a cyclical deposition process is disclosed. The method may include: contacting the substrate with a first vapor phase reactant comprising a transition metal halide compound comprising a bidentate nitrogen containing adduct ligand; and contacting the substrate with a second vapor phase reactant. A method for supplying a transition metal halide compound comprising a bidentate nitrogen containing ligand to a reaction chamber is disclosed, along with related vapor deposition apparatus.
Owner:ASM IP HLDG BV

Deposition methods using heteroleptic precursors

An ALD method includes exposing a substrate to a first precursor including a plurality of different ligands, chemisorbing a precursor monolayer on the substrate, and reacting a second precursor with the precursor monolayer to yield a product monolayer. A surface reactive ligand exhibits a chemisorption affinity that exceeds the chemisorption affinity exhibited by a gas reactive ligand. Another deposition method includes exposing a substrate to a precursor containing an amino and / or imino ligand and a halide ligand and depositing a layer. The precursor exhibits a volatility that exceeds the volatility with a halide ligand taking the place of each amino and / or imino ligand. The precursor exhibits a thermal stability that exceeds the thermal stability with an amino and / or imino ligand taking the place of each halide ligand. The layer may exhibit less halogen content than with a halide ligand taking the place of each amino and / or imino ligand.
Owner:MICRON TECH INC

Adduct of magnesium halides, preparation method, and application

This invention provides a kind of magnesium halide adducts, whose general chemical formula is MgX2-mROH-nE-pH2O (I), wherein, X is Cl or Br; R is C1-C12 alkyl, C3-C10 cycloalkyl or C6-C10 aryl; E is dialkoxy hydrocarbon compound as shown in formula (II); m is 1-5; n is 0.005-1.0; p is 0-0.8. In formula (II), R1, R2, R3 and R4 are the same or different, and are H or C1-C10 linear or branched alkyl, C3-C10 cycloalkyl, C6-C10 aryl, C7-C10 alkylaryl or arylalkyl; two or more groups of R1 and R2 can bond into one or several fused rings; H is aryl or alkylaryl or H in benzene ring of arylalkyl can be substituted by halogen.
Owner:CHINA PETROLEUM & CHEM CORP +1

Process for manufacture of fluorinated olefins

A process for the production of fluorinated olefins, preferably fluorinated propenes, by contacting a feed stream containing a fluorinated olefin and hydrogen with a first amount of catalyst to produce the hydrofluorocarbon, wherein a first exit stream contains unreacted fluorinated olefin and hydrogen; contacting the first exit stream with a second amount of catalyst to produce a hydrofluorocarbon, wherein the second amount of catalyst is preferably greater than the first amount of catalyst; and contacting the hydrofluorocarbon with a catalyst for dehydrohalogenation to produce a product stream of fluorinated olefin.
Owner:HONEYWELL INT INC

Method of producing conjugated diene polymers with narrow molecular weight distribution and polymer produced

Conjugated diene polymers having good wear resistance, mechanical properties, storage stability, processability and a reduced cold flow are produced by polymerizing a conjugated diene compound with a catalyst of rare earth element compound, a compound containing at least one halogen atom, an aluminoxane, and an organoaluminum compound in an organic solvent and reacting the resulting polymer just after the polymerization with at least one compound selected from the group consisting of a halogenated organometallic compound, a halogenated metal compound, an organometallic compound, a heterocumulene compound, a hetero three-membered-ring containing compound, a halogenated isocyano compound, a carboxylic acid, an acid halide, an ester compound, a carbonic ester compound, an acid anhydride and a metal salt of a carboxylic acid as a modifying agent.
Owner:JSR CORPORATIOON
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products