Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

15457 results about "Solar battery" patented technology

A solar battery is a rechargeable battery developed in 2014 by researchers at Ohio State University. The researchers have created a dye-sensitized solar cell that stores its own power by breathing air to decompose and re-form lithium peroxide. Its creators believe the device, which effectively combines a battery and a solar cell in one, could reduce renewable energy costs by 25 percent.

Large-area magnetron sputtering chamber with individually controlled sputtering zones

The present invention generally provides an apparatus for processing a surface of a substrate in a physical vapor deposition (PVD) chamber that has a sputtering target that has separately biasable sections, regions or zones to improve the deposition uniformity. In general, aspects of the present invention can be used for flat panel display processing, semiconductor processing, solar cell processing, or any other substrate processing. In one aspect, each of the target sections of the multizone target assembly are biased at a different cathodic biases by use of one or more DC or RF power sources. In one aspect, each of the target sections of the multizone target assembly are biased at a different cathodic biases by use of one power source and one or more resistive, capacitive and / or inductive elements. In one aspect, the processing chamber contains a multizone target assembly that has one or more ports that are adapted deliver a processing gas to the processing region of the PVD chamber. In one aspect, the processing chamber contains a multizone target assembly that has one or more magnetron assemblies positioned adjacent to one or more of the target sections.
Owner:APPLIED MATERIALS INC

Electronic device module comprising polyolefin copolymer with low unsaturation and optional vinyl silane

An electronic device module comprising:A. At least one electronic device, e.g., a solar cell, andB. A polymeric material in intimate contact with at least one surface of the electronic device, the polymeric material comprising (1) an ethylene-based polymer composition characterized by a Comonomer Distribution Constant greater than about 45, more preferably greater than 50, most preferably greater than 95, and as high as 400, preferably as high as 200, wherein the composition has less than 120 total unsaturation unit / 1,000,000C, preferably the ethylene-based polymer compositions comprise up to about 3 long chain branches / 1000 carbons, more preferably from about 0.01 to about 3 long chain branches / 1000 carbons; the ethylene-based polymer composition can have a ZSVR of at least 2; the ethylene-based polymer compositions can be further characterized by comprising less than 20 vinylidene unsaturation unit / 1,000,000C; the ethylene-based polymer compositions can have a bimodal molecular weight distribution (MWD) or a multi-modal MWD; the ethylene-based polymer compositions can have a comonomer distribution profile comprising a mono or bimodal distribution from 35° C. to 120° C., excluding purge; the ethylene-based polymer compositions can comprise a single DSC melting peak; the ethylene-based polymer compositions can comprise a weight average molecular weight (Mw) from about 17,000 to about 220,000, (2) optionally, a vinyl silane, (3) optionally, a free radical initiator, e.g., a peroxide or azo compound, or a photoinitiator, e.g., benzophenone, and (4) optionally, a co-agent.
Owner:NAUMOVITZ JOHN +3

Solar cells with grid wire interconnections

A plurality of solar cells is connected together in a shingled fashion. Each of the solar cells includes grid wires that are attached to an electrode of the solar cell so as to receive charge carriers produced when photons are absorbed by the solar cell. The grid wires are then interconnected with adjacent solar cells when the solar cells are shingled together. The grid wires may be applied to the solar cells via a laminate and the electrical interconnection of the grid wires may be achieved by the use of a conductive epoxy.
Owner:SOLOPOWER

Backside protective sheet for solar battery module and solar battery module using the same

There is provided a backside protective sheet for a solar battery module that is excellent in strength as well as in various properties such as weathering resistance, heat resistance, water resistance, light resistance, wind pressure resistance, hailstorm resistance, chemical resistance, moisture resistance, antifouling properties, light reflectivity, light diffusivity, and design, and is particularly excellent in the so-called “moisture resistance,” which is the ability to prevent the entry of moisture, oxygen and the like, and durability against performance degradation with time, particularly against hydrolytic degradation and the like, and is also excellent in protective capability. There is also provided a backside protective sheet for a solar battery module, which can facilitate inventory control by properly using the front side and back side of the protective sheet depending upon applications and is excellent in cost performance, and a solar battery module using the same. The backside protective sheet for a solar battery module comprises: a deposited assembly comprising a vapor-deposited film of an inorganic oxide provided on at least one side of a substrate; and a transparent or translucent heat-resistant polyolefin resin layer provided on both sides of the deposited assembly.
Owner:DAI NIPPON PRINTING CO LTD

Electric conductive silver paste and manufacturing method thereof

The invention discloses electric conductive silver paste and a manufacturing method of the electric conductive silver paste. The electric conductive silver paste comprises, by mass percentage, 35 - 65 % of micron-sized silver powder, 1-10 % of nanometer-sized silver powder of or 1-20 % of nanometer-sized silver and other metal alloy powder, and 1-10 % of an organic carrier; for ceramics, solar cell silver paste comprises 2-15 % of unleaded glass powder, each component is manufactured in parts, weighed, mixed and stirred or mixed and rapidly scattered, and ultrasonic-vibrated or fine adjusted of viscosity of solvent, and therefore the electric conductive silver paste is obtained. Due to the fact that the nanometer-sized silver powder or the nanometer-sized silver alloy powder is mixed with the micron-sized silver powder, intensity of conductivity and a circuit is improved, adhesive force of crushing resistance and a base plate is improved, at the same time unleaded slurry good in thixotropy, low in contacting resistance and low in piece-needed slurry amount replaces lead slurry materials, the electric conductive silver paste is used for manufacturing crystalline silicon solar cells, improves photoelectric conversion efficiency, accords with environmental-protection ideas, and can be produced in large scales continuously.
Owner:SHENZHEN CHENGGONG CHEM

Environmental survey robot

An environmental survey robot suitable for wireless communicating with a survey action management center having a geographic information system to scheme an advance route with multiple check points is provided. The environmental survey robot includes a moving vehicle, a controlling computer, a wireless communication network, a Global positioning system, an environment detector, a solar cell and a power controller. The wireless communication network receives the advance route from the detecting action management center, and the controlling computer autonomously controls the moving vehicle to move in accordance with the advance route. The environmental detector is suitable for detecting the environment information and sending the same to the controlling computer. When the electricity of the solar cell is less than a predetermined value, the power controller will send the signal to the controlling computer such that the action controller will stop the action of the moving vehicle.
Owner:INST NUCLEAR ENERGY RES ROCAEC

Process for producing dispersible and conductive Nano Graphene Platelets from non-oxidized graphitic materials

ActiveUS20100056819A1Impart dispersibilityImpart solubilityMaterial nanotechnologyPigmenting treatmentDisplay deviceSolar cell
The present invention provides a process for producing nano graphene platelets (NGPs) that are both dispersible and electrically conducting. The process comprises: (a) preparing a pristine NGP material from a graphitic material; and (b) subjecting the pristine NGP material to an oxidation treatment to obtain the dispersible NGP material, wherein the NGP material has an oxygen content no greater than 25% by weight. Conductive NGPs can find applications in transparent electrodes for solar cells or flat panel displays, additives for battery and supercapacitor electrodes, conductive nanocomposite for electromagnetic wave interference (EMI) shielding and static charge dissipation, etc.
Owner:GLOBAL GRAPHENE GRP INC

Method for realizing large-scale preparation of monolayer oxidized graphene

The invention relates to a method used for realizing large-scale preparation of monolayer oxidized graphene. The method comprises the following steps: oxidizing natural crystalline flake graphite by an oxidant to obtain oxidized graphite; after ultrasonic stripping, carrying out filtration to remove unreacted graphite and obtain the aqueous solution of oxidized graphene; and adding a flocculating agent to obtain oxidized graphene solid after settlement, filtration and drying. The method can easily separate the oxidized graphene solid from aqueous dispersion solution through flocculating settlement, thereby realizing large-scale preparation of graphene; moreover, the method has cheap and accessible raw materials, easy operation, simple process and good reproducibility, and is suitable for large-scale industrial production. The monatomic oxidized graphene prepared by the method can be used as flake reinforced phase of composite materials to prepare materials with high mechanical property and barrier property; moreover, the oxidized graphene can also be used for preparing fingerprint collecting materials, and the like. Graphene, namely the reduction product of the oxidized graphene can be used for constructing two-dimensional photoelectron components such as nano computer chips, solar battery electrodes and field effect transistors and the like.
Owner:HUBEI UNIV

Solar cell and method for producing the same

InactiveUS20050126627A1Fine solar cell propertySurface reflection be reducePhotovoltaic energy generationSemiconductor devicesMaximum diameterEngineering
A solar cell includes at least: a semiconductor substrate having a pn junction and a plurality of microscopic depressions formed in a light-receiving surface thereof; a front electrode formed on the light-receiving surface of the substrate; and a rear electrode formed on a rear surface of the substrate. The plurality of depressions each have a ratio of the maximum depth to the maximum diameter of 0.5 to 2.
Owner:SHARP KK

Low modulus solar cell encapsulant sheets with enhanced stability and adhesion

The present invention provides a thermoplastic film or sheet comprising two surface layers made of acid copolymers, or ionomers, or combinations thereof and at least one inner layer made of ethylene acrylate ester copolymers, a solar cell module comprising at least one encapsulant layer derived therefrom, and a process of manufacturing the solar cell module.
Owner:DOW GLOBAL TECH LLC

Dispersible and conductive Nano Graphene Platelets

ActiveUS20100055458A1Impart dispersibilityImpart solubilityMaterial nanotechnologySynthetic resin layered productsDisplay deviceSolar cell
The present invention provides a dispersible and electrically conductive nano graphene platelet (NGP) material comprising at least a single-layer or multiple-layer graphene sheet, wherein the NGP material has an oxygen content no greater than 25% by weight and no less than 5% by weight. This NGP material can be produced by: (a) preparing a pristine NGP material from a graphitic material; and (b) subjecting the pristine NGP material to an oxidation treatment. Alternatively, the production process may comprise: (A) preparing a graphite oxide (GO) from a laminar graphite material; (b) exposing the GO to a first temperature for a first period of time to obtain exfoliated graphite; and (c) exposing the exfoliated graphite to a second temperature in a protective atmosphere for a second period of time. Conductive NGPs can find applications in transparent electrodes for solar cells or flat panel displays, additives for battery and supercapacitor electrodes, conductive nanocomposite for electromagnetic wave interference (EMI) shielding and static charge dissipation, etc.
Owner:GLOBAL GRAPHENE GRP INC

Metallization of buried contact solar cells

The present invention makes use of geometry of grooves formed in a substrate, to allow a dielectric layer to be deposited with some regions of the grooves having a substantially thinner layer deposited than top surfaces of the substrate. These regions of reduced thickness dielectric within the grooves are then prematurely etched by an appropriate chemical, or other, etchant capable of controllably etching away the dielectric layer, with the result that in these regions the silicon surface can be exposed and plated by a metallization while the top surface remains protected by the dielectric material. The remaining dielectric material can optionally be required to act as an anti-reflective coating. The invention is applicable in making buried contact solar cells.
Owner:UNISEARCH LTD

Electronic Device Module Comprising an Ethylene Multi-Block Copolymer

An electronic device module comprises:A. At least one electronic device, e.g., a solar cell, andB. A polymeric material in intimate contact with at least one surface of the electronic device, the polymeric material comprising an ethylene multi-block copolymer.Typically, the polyolefin material is an ethylene multi-block copolymer with a density of less than about 0.90 grams per cubic centimeter (g / cc). The polymeric material can fully encapsulate the electronic device, or it can be laminated to one face surface of the device. Optionally, the polymeric material can further comprise a scorch inhibitor, and the copolymer can remain uncrosslinked or it can be crosslinked.
Owner:DOW GLOBAL TECH LLC

Printable Medium for the Etching of Silicon Dioxide and Silicon Nitride Layers

The present invention relates to a novel printable etching medium having non-Newtonian flow behaviour for the etching of surfaces in the production of solar cells and to the use thereof. In particular, the invention relates to corresponding particle-containing compositions by means of which extremely fine structures can be etched very selectively without damaging or attacking adjacent areas.
Owner:MERCK PATENT GMBH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products