Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

643 results about "Gas expansion" patented technology

Gas expansion. In reservoir systems with little or no water drive, gas expansion often provides the energy necessary to move hydrocarbons to the wellbore. Free gas in a gas reservoir or in the gas cap of an oil reservoir expands to replace produced hydrocarbons.

Air separation process integrated with gas turbine combustion engine driver

A method for the separation of a feed gas mixture comprising oxygen and nitrogen in which an oxidant gas and fuel are combusted in a combustion engine to generate shaft work and a hot exhaust gas, the feed gas mixture comprising oxygen and nitrogen is compressed, and the resulting compressed feed gas mixture is separated into two or more product gas streams with differing compositions. The shaft work of the combustion engine is utilized to provide at least a portion of the work required for compressing the feed gas mixture, one of the product gas streams by is heated by indirect heat exchange with the hot exhaust gas from the combustion engine, and the resulting heated product gas is work expanded to generate shaft work and yield an expanded product gas stream. The combustion engine may be a gas turbine combustion engine.
Owner:AIR PROD & CHEM INC

Integrated fuel cell hybrid power plant with controlled oxidant flow for combustion of spent fuel

InactiveUS20050079395A1Reduction of fuelReduction of carbon monoxide emissionFuel cells groupingFuel cell auxillariesElectric forceRecuperator
A hybrid power generation system for generating electrical power comprises a compressor for producing a compressed oxidant and a recuperator in flow communication with the compressor. The hybrid power generation system further comprises a fuel cell assembly comprising a plurality of fuel cells in flow communication with the recuperator to provide the compressed oxidant for the fuel cell assembly. The fuel cell assembly further comprises a cathode inlet for receiving the compressed oxidant, an anode inlet for receiving a fuel stream, an anode outlet in flow communication with an anode exhaust stream and a cathode outlet in flow communication with a cathode exhaust stream, wherein at least a portion of the fuel reacts with the oxidant to produce electrical power. The hybrid power generation system further comprises a tail gas burner in flow communication with the anode outlet and the cathode outlet. The tail gas burner is configured for combusting a mixture of at least a portion of the anode exhaust stream and at least a portion of the cathode exhaust stream and producing a hot compressed gas. A control system is used for controlling the amount of the cathode exhaust stream introduced in the tail gas burner for stable combustion and reduction of fuel and carbon monoxide emission. The hot compressed gas from the tail gas burner is introduced to a turbine, where the hot compressed gas is expanded, thereby producing electrical power and an expanded gas.
Owner:GENERAL ELECTRIC CO

Reciprocating system with buoyant aircraft, spinnaker sail, and heavy cars for generating electric power

An electric generating system uses a zeppelin filled with helium or hydrogen, and a spinnaker sail, to provide pulling power that will lift a heavy railcar to an elevated height on a track, such as on a hill or mountainside, or in an elevator-type shaft in a tall building. When the heavy car reaches the top of the track, it is released, and its descent drives an electric generator. The generator can be carried by the car, and can send the power to batteries on the car, or to conductive rails. Alternately, if the car is inert weight, cables can drive stationary generators. The zeppelin will be inflated and deflated repeatedly, using equipment to recapture energy during each gas expansion, to help drive subsequent recompression into high-pressure tanks. The spinnaker sail will use a cable-handling device and spreader bars to deploy the sail and keep it at an elevated height. Various advantages are provided compared to wind turbines and pumped-storage hydroelectric facilities.
Owner:TETRAHEED

Air cannon and associated launch canister for a line-fouling system

FIG. 7 shows an air cannon system loaded with a launch canister containing a prop-fouler. A pressure vessel (28) contains an inlet including a poppet valve (100) that, upon command, can be selectively placed in either a one-way flow position to permit charging of the pressure vessel or otherwise opened to trigger rapid discharge through pressure equalization with the ambient environment. The air cannon may include multiple splayed barrels or a single barrel (158). A launch canister (202), realized in the form of a tube, has a driving plate (350) that closes an end of the launch tube. The driving plate is the first point loaded into the barrel. Within the launch canister (202) a first portion of a floating prop-fouling line is stored. The prop-fouling line, such as made from Dyneema®, has at its ends two drogues that, upon entry into the water, fill with water to produce drag resistance to movement of the prop-fouling line. To avoid undue stress on canopy panels of each drogue and to avoid twisting of shroud lines (312) to the canopy, a rotating shackle (310a, 310b) acts as a coupling point between the shroud lines (312) and the prop-fouling line. Only one drogue (306), its associated coupling and a selected length prop-fouling line are loaded into the launch canister, with the other drogue and its rotating shackle (310b) loaded into a cradle (166). Upon firing, gas expansion causes the rapid acceleration and ejection of the launch tube (202) and generally straight line deployment of the prop-fouling line (302).
Owner:BCB INT

Thermodynamic systems operating with near-isothermal compression and expansion cycles

A thermodynamic system that can approximate the Ericsson or Brayton cycles and operated in reverse or forward modes to implement a cooler or engine, respectively. The thermodynamic system includes a device for compressing a first fluid stream containing a first gas-liquid mixture having a sufficient liquid content so that compression of the gas within the first gas-liquid mixture by the compressing device is nearly isothermal, and a device for expanding a second fluid stream containing a second gas-liquid mixture having a sufficient liquid content so that expansion of the gas within the second gas-liquid mixture by the expanding device is nearly isothermal. A heat sink is in thermal communication with at least the liquid of the first gas-liquid mixture for transferring heat therefrom, and a heat source is in thermal communication with at least the liquid of the second gas-liquid mixture for transferring heat thereto. A device is provided for transferring heat between at least the gas of the first gas-liquid mixture after the first fluid stream exits the compressing device and at least the gas of the second gas-liquid mixture after the second fluid stream exits the expanding device. The compressing and expanding devices are not liquid-ring compressors or expanders, but instead are devices that tolerate liquid flooding, such as scroll-type compressors and expanders.
Owner:PURDUE RES FOUND INC

Formation method for high-voltage lithium ion flexibly packaged battery

The invention provides a formation method for a high-voltage lithium ion flexibly packaged battery, and relates to the technical field of a lithium ion battery. The formation method comprises the steps of forming an opening in a flexibly packaged cell after the cell is completely injected with an electrolyte, and laying up the cell in a vacuum state for 8-24h, then sealing the opening, mounting a clamp, adjusting pressure and temperature, taking a first current for charging until reaching a first cut-off voltage, and laying up; then adjusting the pressure and temperature, performing two times of charging, discharging, re-charging and re-discharging, and then completing the formation. By adoption of the formation method for the high-voltage lithium ion flexibly packaged battery, a relatively uniform solid electrolyte interphase film (SEI film) can be formed on the surface of the electrode, the problem of battery gas expansion is solved, and the cycling performance of the battery can be improved.
Owner:HEFEI GUOXUAN HIGH TECH POWER ENERGY

Method to condense and recover carbon dioxide from fuel cells

A method to condense and recover carbon dioxide. A first step involve providing at more than one heat exchanger, with each heat exchanger having a first flow path for passage of a first fluid and a second flow path for passage of a second fluid. A second step involves passing a stream of very cold natural gas sequentially along the first flow path of each heat exchanger until it is heated for distribution and concurrently passing a gaseous stream rich in carbon dioxide sequentially along the second flow path of each heat exchanger, allowing a gaseous portion of the gaseous stream rich in carbon dioxide to pass to a next sequential heat exchanger and capturing in a collection vessel the condensed carbon dioxide. This processes results in a cryogenic heat exchange in which natural gas at Metering and Pressure ReductionStations is first cooled by reducing its pressure through a gas expander or a pressure reducing valve and then heated in a series of stages and the gaseous stream rich in carbon dioxide stream is separated in a series of stages through sequential cryogenic carbon dioxide separation and recovery.
Owner:1304338 ALBERTA

External heat engine of the rotary vane type and compressor/expander

A heat engine of the rotary vane type and thermodynamic cycle is disclosed. The engine converts thermal energy contained within relatively low temperature hot gasses into mechanical energy. The engine operates by expanding a hot gas to a sub-atmospheric pressure, cooling the gas at a roughly constant volume and then cooling the gas further while compressing it back to atmospheric pressure. Possible sources of hot gasses for powering the engine include exhaust gasses from other engines and air heated by solar collectors. A novel compressor and expander comprised of the primary components of the engine is also disclosed.
Owner:CARNAHAN ERIC SCOTT

System and method for recovering exhaust gas in olefin polymer production

The invention provides a system for recovering the emission of an olefin polymerization process. The system comprises a devolatilization device, a compression cooling unit, a first gas-liquid separation device, a first gas separation device and a second gas separation device, wherein the devolatilization device is used for receiving the emission and fresh purge gas from the olefin polymerization process and outputting a first fluid and polyolefin resin; the compression cooling unit comprises a compression device and a first heat exchange device and is used for receiving the first fluid and outputting a first gas-liquid mixture; the first gas-liquid separation device is used for performing gas-liquid separation on the first gas-liquid mixture and outputting a first recovery product and a first gas-phase component; the first gas separation device is used for receiving the first gas-phase component and removing small-molecular substances therein and outputting a component rich in small-molecular gases and a second gas-phase component rich in hydrocarbon substances; the second gas separation device comprises a second heat exchange device, a second gas-liquid separation device and a first gas expansion device.
Owner:HANGZHOU SHUANGAN SCI TECH +1

Process and device for generating power by pressure energy of small natural gas pipeline network

InactiveCN103422899ALeak will notSolve the problem that cannot be explosion-proofSealing arrangements for enginesMachines/enginesGas cylinderPower user
The invention discloses a process and a device for generating power by pressure energy of a small natural gas pipeline network. A high-pressure pipeline network of the device is connected with a gas inlet of an expansion machine through a pipeline; a gas outlet of the expansion machine is connected with a gas inlet of a temperature balancer through a pipeline; an outlet of the temperature balancer is connected with a low and medium-pressure gas pipeline network through a pipeline; a main shaft of the expansion machine is connected with a gearbox; the gearbox is connected with a power generator; the power generator is connected with a transformer synchronizer; the expansion machine adopts an improved AT15-65 type gas expansion machine; one end of the main shaft is connected with an air cylinder in a totally-closed way; a first seal ring and a second seal ring, which have sealing effects, are arranged between the other end of the main shaft and a wheel drum; a flow guide pipe is arranged in a closed cavity between the two seal rings; the flow guide pipe is connected with an inert gas bottle. The device can be used for continuously and stably providing a 220 V / 380 V stable power supply for an interruptible and closed 1-5 kW low-power user.
Owner:SOUTH CHINA UNIV OF TECH +1

Gas expansion natural gas pressurized liquefying technique with function of condensing and removing carbon dioxide (CO2)

The invention relates to a gas expansion natural gas pressurized liquefying technique with a function of condensing and removing carbon dioxide (CO2), which comprises the steps of: precooling natural gas at a gaseous state in a precooler, continuously cooling the natural gas in a crystallizing device, condensing and separating solid dry ice while lowering the content of the CO2 to 0.5 percent, then pressurizing the natural gas in a low-temperature compressor, then introducing the natural gas in a liquefying device and liquefying the natural gas under higher pressure and then introducing the liquefied natural gas into a storage tank for storing. The cold capacity needed by the liquefying process is supplied by an independent gas expansion refrigeration circulation. Compared with the prior art, the gas expansion natural gas pressurized liquefying technique has the advantages that: a CO2 pretreatment device occupying a large floor area in the conventional natural gas liquefying process can be saved, so that the investment cost for liquefying the natural gas on an offshore platform in high price can be greatly reduced. Meanwhile, the energy loss of the refrigeration circulation can be reduced when the natural gas is liquefied at a higher temperature.
Owner:SHANGHAI JIAO TONG UNIV

System and method to eliminate a hard rub and optimize a purge flow in a gas turbine

A system and method to eliminate hard rub and optimize a purge flow in a gas turbine is provided. The gas turbine includes a stator configured to guide a flow of an incoming gas. The gas turbine also includes a rotor configured to expand the incoming gas and extract kinetic energy from the incoming gas. The gas turbine further includes a purge flow bled from a compressor and configured to reduce a temperature of a wheel space by limiting ingestion of the incoming gas. The gas turbine also includes an angel wing disposed between the rotor and the stator and configured to act as a sealing surface between the rotor and the stator. The gas turbine further includes a fan blade disposed on a surface of the angel wing at an axial position and configured to generate a recirculation zone of the purge flow, wherein the recirculation zone is reduces a volume of successive purge flows entering the wheel space.
Owner:GENERAL ELECTRIC CO

Slotting induced-flow pressure-relief anti-reflection method for complicated seam

A slotting induced-flow pressure-relief anti-reflection method for a complicated seam is suitable for gas control of high-gas high-ground-stress complicated seam regions, can improve the gas permeability and gas desorption rate of coal, solves the difficult problems of low exhausting and mining efficiencies of coal-bed gas, high drilling construction load and the like, and realizes efficient gas exhausting and mining as well as fast outburst elimination of the complicated seam. High-pressure water is jetted into drilled holes to cut and destroy the coal in a rotary manner, and the coal in the radial direction of the drilled holes is destroyed and disturbed, so that buckling failures of the coal are induced and the coal and the gas are enabled to be spouted out of the drilled holes, as a result, the gas expansion energy of the coal is released, coal cracks are expanded and the exposure surface area of the coal is increased. therefore, the gas exhausting and mining efficiencies of coal are improved, coal and gas burst risks are eliminated, the effective influence range of drilling gas exhausting and mining is improved by 1-3 times, the air permeability coefficient of coal around the drilled holes is improved by 100-200 times, the drilling methane gas exhausting and mining quantity is improved by 2-5 times within hundreds of meters, and the outburst elimination time of the coal bed is shortened by 30-50 percent. The slotting induced-flow pressure-relief anti-reflection method for the complicated seam has very good field application value and social benefits.
Owner:CHINA UNIV OF MINING & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products