Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3153results about "Fluid couplings" patented technology

Hydraulic circuit with a return line metering valve and method of operation

A hydraulic system controls the flow of fluid to and from several functions on a machine. Each function has a valve assembly through which fluid is supplied under pressure from a source to an actuator and through which fluid returns from the actuator to a shared return line connected by a return line metering valve to the system tank. There are several regeneration modes of operation in which fluid exhausted from one port is supplied into the other port of the same actuator, which eliminates or reduces the amount of hydraulic fluid that must be supplied from the source. In some regeneration modes, input fluid for an actuator is obtained from another hydraulic function via the shared return line. In these regeneration modes an electronic controller operates the return line metering valve to restrict fluid from flowing into the tank from the shared return line, so that the fluid will be available to be supplied into an actuator port.
Owner:HUSCO INT INC

Systems and methods for energy storage and recovery using compressed gas

The invention relates to methods and systems for the storage and recovery of energy using open-air hydraulic-pneumatic accumulator and intensifier arrangements that combine at least one accumulator and at least one intensifier in communication with a high-pressure gas storage reservoir on a gas-side of the circuits and a combination fluid motor / pump, coupled to a combination electric generator / motor on the fluid side of the circuits.
Owner:SUSTAINX

Systems and Methods for Energy Storage and Recovery Using Rapid Isothermal Gas Expansion and Compression

The invention relates to systems and methods for rapidly and isothermally expanding and compressing gas in energy storage and recovery systems that use open-air hydraulic-pneumatic cylinder assemblies, such as an accumulator and an intensifier in communication with a high-pressure gas storage reservoir on a gas-side of the circuits and a combination fluid motor / pump, coupled to a combination electric generator / motor on the fluid side of the circuits. The systems use heat transfer subsystems in communication with at least one of the cylinder assemblies or reservoir to thermally condition the gas being expanded or compressed.
Owner:SUSTAINX

Vehicle control system and method

An interface module for a power distribution and control system for a vehicle is described. The interface module includes at least one first link configured to receive an input from input devices on the vehicle, at least one second link configured to control output devices on the vehicle, at least one third link configured to communicate with a communication network. The module further includes control logic configured to store a record of output devices associated with the interface module and to process a configuration file to determine whether any of the output devices have been designated as controlling a mission critical function.
Owner:OSHKOSH CORPORATION

Series drive clutch

A clutch mechanism is disclosed for use with a hybrid electric vehicle wherein the electric motor-generator and engine are arranged in a series configuration. The clutch mechanism is positioned between and in communication with the electric motor-generator and engine to allow for either direct drive or a predetermined gear ratio between the electric motor-generator and engine. The electric motor-generator is preferably an integrated electric motor and generator. The engine is preferably a combustion engine.
Owner:NTN CORP

Flow management system for hydraulic work machine

A flow management system capable of providing adjustable hydraulic fluid flow or pressure at a common line to supply bidirectional pumps in electro-hydrostatic actuation systems and conditioning re-circulated hydraulic fluid. The system enables flow sharing between multiple actuation systems and minimization of energy consumption by a power-on-demand approach and / or electrical energy regeneration while eliminating the need for an accumulator. The system has particular application to electro-hydrostatic actuation systems that typically include bi-directional electric motor driven pumps and unbalanced hydraulic actuators connected within closed circuits to provide work output against external loads and reversely recover energy from externally applied loads.
Owner:PARKER INTANGIBLES LLC

Construction machine

ActiveUS20050036894A1High electrical power generation efficiencyEfficient energy regenerationFluid couplingsMotor parameterElectricityHydraulic pump
In order to provide a construction machine by which energy regeneration can be performed reliably and battery and electrical power generator can be miniaturized, a construction machine has an engine, a hydraulic pump driven by the engine, and an actuator driven by discharge oil from the hydraulic pump, and a regenerative motor which rotates by return oil from the actuator is connected to the rotation shaft of the hydraulic pump. The hydraulic pump is driven by the engine and the regenerative motor when drive torque necessary in the hydraulic pump is larger than output torque generated by operation of the regenerative motor. Meanwhile, the hydraulic pump is driven by the regenerative motor when the drive torque of the hydraulic pump is smaller than output torque of the regenerative motor, and an electrical power generator connected to the rotation shaft of the hydraulic pump is operated to generate electricity by excess torque which has not been energy-regenerated in the hydraulic pump so that this generated electrical power is charged in a battery.
Owner:KOMATSU LTD

Energy recovery system

An energy recovery system for a machine is disclosed. The energy recovery system may have a pump configured to provide a flow of pressurized fluid. The energy recovery system may also have a first fluid actuator with a first chamber and a second chamber and being configured to receive the pressurized fluid, a second fluid actuator with a third chamber and a fourth chamber and being configured to receive the pressurized fluid, and a first valve fluidly connected between the pump and the first and second actuators. The energy recovery system may additionally include an isolation unit with a first selectively restrictable passageway fluidly connecting the first chamber, the third chamber, and a first outlet of the first valve, and a second selectively restrictable passageway fluidly connecting the second chamber, the fourth chamber, and a second outlet of the first valve, as well as an energy recovery unit in fluid communication with the isolation unit. The isolation unit may be configured to direct a flow of pressurized fluid from the second actuator to the energy recovery unit. The energy recovery unit may be configured to convert the flow of pressurized fluid to a first mechanical power output.
Owner:CATERPILLAR INC

Methods and apparatus for advanced wind turbine design

A wind turbine system includes a variable blade assembly including adjustable sails and wing shaped masts expanding the wind velocity capture envelope. The blade assembly turns a hydraulic pump, which pressurizes fluid and stores the pressurized fluid in a chamber in the support tower. Pressurized fluid is directed via an electronically controllable proportioning valve to a hydraulic motor which is coupled to an electric generator. A computer control module operates the proportioning valve regulating pressure to the hydraulic motor, maintaining generator rotational speed, and providing consistent output frequency to the power grid. Stored energy in the high pressure tank is used to continue generator operation after the winds cease, allowing early warning notification to the power management system of impending power loss. Residual pressure maintained in the high pressure tank allows restart operations via hydraulic pressure rather than power grid energy drain. On site high energy capacitors store additional energy.
Owner:MCCLINTIC FRANK

System and Method for Rapid Isothermal Gas Expansion and Compression for Energy Storage

The invention relates to systems and methods for rapidly and isothermally expanding gas in a cylinder. The cylinder is used in a staged hydraulic-pneumatic energy conversion system and includes a gas chamber (pneumatic side) and a fluid chamber (hydraulic side) and a piston or other mechanism that separates the gas chamber and fluid chamber while allowing the transfer of force / pressure between each opposing chamber. The gas chamber of the cylinder includes ports that are coupled to a heat transfer subassembly that circulates gas from the pneumatic side and exchanges its heat with a counter flow of ambient temperature fluid from a reservoir or other source.
Owner:SUSTAINX

Compressed air pumped hydro energy storage and distribution system

A compressed air pumped hydro energy storage and distribution system includes a first reservoir of water and a second reservoir of air and water. An air pressure source, connected to the second reservoir, develops a pressure head in the second reservoir. A pump / turbine-motor / generator, received by the first reservoir, is connected to a regional energy grid. During peak demand periods, the pressure head forces water through the pump / turbine-motor / generator to generate power, delivered to the grid. During low demand periods, the pump / turbine-motor / generator pumps water back to the second reservoir, regenerating the pressure head. A third air reservoir interconnected with the second reservoir and a gas turbine generator can be used to generate power during peak demand periods. The reservoirs can be tunnels or abandoned mines, reinforced and sealed by pressure grouting and / or an internal liner, maintained well beneath the earth's surface and intersecting the path of the grid.
Owner:EBO GROUP

Systems and Methods for Energy Storage and Recovery Using Compressed Gas

The invention relates to methods and systems for the storage and recovery of energy using open-air hydraulic-pneumatic accumulator and intensifier arrangements that combine at least one accumulator and at least one intensifier in communication with a high-pressure gas storage reservoir on a gas-side of the circuits and a combination fluid motor / pump, coupled to a combination electric generator / motor on the fluid side of the circuits.
Owner:SUSTAINX

System and method for rapid isothermal gas expansion and compression for energy storage

The invention relates to systems and methods for rapidly and isothermally expanding gas in a cylinder. The cylinder is used in a staged hydraulic-pneumatic energy conversion system and includes a gas chamber (pneumatic side) and a fluid chamber (hydraulic side) and a piston or other mechanism that separates the gas chamber and fluid chamber while allowing the transfer of force / pressure between each opposing chamber. The gas chamber of the cylinder includes ports that are coupled to a heat transfer subassembly that circulates gas from the pneumatic side and exchanges its heat with a counter flow of ambient temperature fluid from a reservoir or other source.
Owner:SUSTAINX

Energy recovery and reuse techniques for a hydraulic system

A hydraulic system has a valve assembly with two workports coupled to chambers of first and second cylinders which are connected mechanically in parallel to a machine component. A separation control valve is connected between first chambers of both cylinders, and a shunt control valve is connected between the workports. A recovery control valve couples an accumulator to the first chamber of the second cylinder. Opening and closing the valves in different combinations routes fluid from one or both cylinders into the accumulator where the fluid is stored under pressure, and thereafter enables stored fluid to be used to power one or both cylinders. The shunt control valve is used to route fluid exhausting from one chamber of each cylinder to the other chambers of those cylinders. Thus the hydraulic system recovers and reuses energy in various manners.
Owner:HUSCO INT INC

Actuators

Actuators suited for use with, for example, vehicular suspension systems. In some embodiments, the present actuators include a reversible hydraulic pump configured to produce variable hydraulic pressure; a hydraulic cylinder assembly having a cylinder bore, and a piston positioned within the cylinder bore that is axially movable relative to the cylinder bore; and a hydraulic circuit hydraulically coupling the reversible hydraulic pump to the hydraulic cylinder assembly. In these embodiments, actuated axial motion of the piston relative to the cylinder bore is accomplished without the use of check valves, pressure regulating valves, or actively controlled valves.
Owner:BOARD OF RGT THE UNIV OF TEXAS SYST

Wave energy conversion device for desalination, ETC

An impulse-type "wave motor" employs a seabed-mounted or supported structure mounting a wave energy absorbing panel on a hinged lever arm for reciprocation motion to obtain optimal absorption of wave energy from wave motion in the sea. For deepwater wavelengths of L, the panel is optimally positioned in a region within L / 2 depth from the sea surface. The panel motion is coupled by a connecting rod to a fluid pump which generates a high-pressure fluid output that may be used to drive a reverse osmosis desalination unit or to produce other useful work. Seawater or brackish water may be desalinated through reverse osmosis membranes to produce water quality for consumption, agricultural, or other uses. The submerged operating environment of the device in a region of one-half the design wavelength provides the maximum available energy flux and forced oscillations. The pump may be of the positive-displacement piston type, plunger type, or multi-staging driver type, or a variable volume pump.
Owner:KOBASHIKAWA ALVIN +1

Hybrid machine with hydraulic drive device

A hybrid machine with a hydraulic drive device having hydraulic actuators allowed to operate against and by external loads is provided. To this end, the hybrid machine comprises hydraulic cylinders (7), first hydraulic pumps (P1) connected, with closed circuits, to head side pressure receiving chambers (7S) and bottom side pressure receiving chambers (7L) of the hydraulic cylinders (7), and second hydraulic pumps (P2) connected, with open circuits, to the bottom side pressure receiving chambers (7L) and an external oil chamber (10), wherein the first and second hydraulic pumps (P1, P2) are connected to electric motors (M) so as to be driven.
Owner:KOMATSU LTD

Wind powered hydroelectric power plant and method of operation thereof

A hydroelectric power plant uses a plurality of windmills connected to compressed air generators to produce pressurized air. Pressurized air is used to drive water through a turbine to produce electrical power. The water is recycled and the power plant includes reserve pressurized air tanks to allow the plant to continue to operate when the wind levels are not sufficient to produce high pressure air. The power plant is designed to be operated on a continuous basis based on wind power. When the wind subsides and the reserve capacity has been exhausted, electricity can be drawn from the local utility supplier. When excess power is generated by the power plant, electricity from the power plant can be added to the grid of the local electricity supplier.
Owner:NEW WORLD GENERATION

Torque controlled pump protection with mechanical loss compensation

A method and apparatus are provided for controlling the operation of a pump, such as a centrifugal pump, featuring steps of either adjusting the operation of the pump, or issues a warning to a user of the pump of an undesirable operating condition, or both, based on a comparison of an actual torque value and a corrected torque value either alone or in combination with a further step of compensating the corrected torque value based on a mechanical power offset correction. The corrected torque value may include a Best Efficiency Point (BEP) torque value and may also be compensated for based on at least the current operating speed of the pump. The pump has a controller for performing the steps of the method. The controller can compensate the corrected torque value based on the square of the speed change of the pump. The comparison may include a ratio of the actual torque value to the corrected torque value.
Owner:ITT MFG ENTERPRISES LLC

Compact hydraulic accumulator

A lightweight, optimally efficient, easily serviced, piston-in-sleeve high pressure accumulator is provided. The accumulator includes one or more cylindrical composite pressure vessel separate end cap manifolds. A piston slidably disposed in a thin impermeable internal sleeve in the accumulator separates two chambers, one adapted for containing a working fluid and the other adapted for containing gas under pressure. Gas is provided in a volume between the impermeable internal sleeve and the composite pressure vessel wall. Additional gas is optionally provided in gas cylinders. Further components are provided for withstanding harmful effects of radial flexing of the composite vessel wall under high pressures, and from stresses present in use in mobile applications such as with a hydraulic power system for a hydraulic hybrid motor vehicle.
Owner:NRG ENTERPRISES

Bi-directional overrunning clutch

A bi-directional overrunning clutch is disclosed for controlling torque transmission between a secondary drive shaft and secondary driven shafts. The overrunning clutch includes a pinion input shaft in a differential housing that engages with a clutch housing rotatably disposed within the differential housing. At least one race is located adjacent to the clutch housing and is engaged with an output shaft. A cage is located between the race and the clutch housing. The cage is movable with respect to the clutch housing. A <DEL-S DATE="20030304" ID="DEL-S-00001" / >first<DEL-E ID="DEL-S-00001" / > coil is mounted within the differential housing adjacent to the cage and is adapted to produce an electromagnetic field when energized which causes the cage to drag with respect to the clutch housing. The dragging of the cage with respect to the clutch housing positions <INS-S DATE="20030304" ID="INS-S-00001" / >rolls within <INS-E ID="INS-S-00001" / >the cage to engage the clutch housing with the race when wheels on a primary drive shaft lose traction. <DEL-S DATE="20030304" ID="DEL-S-00002" / >A<DEL-E ID="DEL-S-00002" / > <INS-S DATE="20030304" ID="INS-S-00002" / >If desired a <INS-E ID="INS-S-00002" / >second coil <DEL-S DATE="20030304" ID="DEL-S-00003" / >is<DEL-E ID="DEL-S-00003" / > <INS-S DATE="20030304" ID="INS-S-00003" / >may be <INS-E ID="INS-S-00003" / >mounted within the differential housing adjacent <DEL-S DATE="20030304" ID="DEL-S-00004" / >adjacent<DEL-E ID="DEL-S-00004" / > to the cage. The second coil is adapted to produce an electromagnetic field when energized which advances cage with respect to the clutch housing causing the clutch housing to engage with the races. When the second coil is activated, the output shaft drives the pinion input shaft producing engine braking. An electronic control system is utilized to control the energizing of the coils.
Owner:HILLIARD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products