Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2967 results about "Electrical energy storage" patented technology

Apparatus, method and article for physical security of power storage devices in vehicles

A network of collection, charging and distribution machines collect, charge and distribute portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors). To avoid theft and tampering of the portable electrical energy storage devices, by default, each portable electrical energy storage device is locked in and operably connected to the vehicle to which it provides power unless the vehicle comes within the vicinity of a collection, charging and distribution machine or other authorized external device such as that in a service center. Once within the vicinity of a collection, charging and distribution machine or other authorized external device a locking mechanism in the vehicle or within the portable electrical energy storage device unlocks and allows the portable electrical energy storage device to be exchanged or serviced.
Owner:GOGORO

Apparatus, method and article for authentication, security and control of power storage devices, such as batteries

A network of collection, charging and distribution machines collect, charge and distribute portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors). To charge, the machines employ electrical current from an external source, such as the electrical grid or an electrical service of an installation location. By default, each portable electrical energy storage device is disabled from accepting a charge unless it receives authentication information from an authorized collection, charging and distribution machine, other authorized charging device, or other authorized device that transmits the authentication credentials. Also, by default, each portable electrical energy storage device is disabled from releasing energy unless it receives authentication information from an external device to which it will provide power, such as a vehicle or other authorization device.
Owner:GOGORO

Apparatus, method and article for physical security of power storage devices in vehicles

A network of collection, charging and distribution machines collect, charge and distribute portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors). To avoid theft and tampering of the portable electrical energy storage devices, by default, each portable electrical energy storage device is locked in and operably connected to the vehicle to which it provides power unless the vehicle comes within the vicinity of a collection, charging and distribution machine or other authorized external device such as that in a service center. Once within the vicinity of a collection, charging and distribution machine or other authorized external device a locking mechanism in the vehicle or within the portable electrical energy storage device unlocks and allows the portable electrical energy storage device to be exchanged or serviced.
Owner:GOGORO

Control system architecture for a hybrid powertrain

A control apparatus for a powertrain system comprising an engine and two electrical machines operably coupled to a two-mode compound-split electro-mechanical transmission is provided. It includes a system controller and two motor control processors. The system controller communicates with the motor control processors via two high speed communications buses and directly-linked serial peripheral interface buses. The motor control processors control flow of electrical power between the electrical machines and an electrical energy storage device. A second control device is operable to control the engine, preferably to control torque output. The internal combustion engine preferably has a crank position sensor which is signally connected to a dedicated input to the second control device and to a dedicated input to the system controller of the first control device.
Owner:ELECTRONICS DATA SYST CORP +1

Power load-leveling system and packet electrical storage

InactiveUS6900556B2Reduce and even eliminate anomalyLong-term powerBatteries circuit arrangementsElectric devicesLow demandThermal energy storage
A large-scale, capacitor-based electrical energy storage and distribution system capable of effectuating load-leveling during periods of peak demand on a utility, and of effectuating a cost savings associated with the purchase of electrical energy. A capacitor or multitude of capacitors may be charged with electrical energy produced by the utility, such as during periods of low demand or low cost, and discharged during periods of high electrical energy consumption or high electrical energy cost. One or more capacitors may be located at a consumer's residence or business. Alternatively, a farm of capacitors may be provided at or near a utility, or at or near a location experiencing high demand. In another embodiment, one or more capacitors may be located in or on a vehicle, such as an automobile, a truck, or a train of a light rail system.
Owner:AMERICAN ELECTRIC POWER CO INC

Railroad vehicle with energy regeneration

A railroad vehicle (1500) for carrying freight is described. The railroad vehicle (1500) comprises power regeneration capability through a traction motor (1530) linked to a driving wheel (1520D), an electrical energy storage system (1550), a controller (1570) that may selectively operate the traction motor (1530) in a motoring mode, a coasting mode, or a dynamic braking mode. In the dynamic braking mode electrical energy from the traction motor (1530) is transmitted to the electrical energy storage system (1550). The controller (1570) is in communication with a communication link (1580) that receives control commands from an external control source (1595), and those control commands indicate the operating mode for a particular period of time.
Owner:GENERAL ELECTRIC CO

Wireless battery charging

Batteries in portable electrical or electronic devices are charged, through by a wireless battery charger, having an intermediate electrical energy storage device that is charged from a non-power line connected source, and discharged to recharge the battery of a portable device placed into a charge port of the wireless battery charger. The non-power line connected source may be a solar cell for converting light impinging on the solar cell into electrical energy. The non-power line connected source may also be a fuel cell for converting a fuel into electrical energy. The wireless battery charger may also include multiple sources, such as both a solar and a fuel cell. Charging the intermediate electrical energy storage device from the non-power line connected source may take place over an extended period of time having a duration longer than the time required to charge the battery of the portable device. The wireless battery charger and portable device may include transformer elements that allow the battery of the portable device to be re-charged by magnetic induction, without the need for electrical contacts in either the charger port or on the portable device.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Wireless electromagnetic parasitic power transfer

A wireless system including an antenna, an electrical energy storage unit connected to the antenna, the energy storage unit receiving power via electromagnetic coupling of the antenna with an RF field generated by a master unit, and an electronics package. The electronics package is powered by the energy storage unit, and it includes a sensor, a processor that is capable of acquiring data from the sensor, and a transmitter connected to the processor and to the antenna, wherein the energy storage unit is capable of storing sufficient energy to supply power for the processor to format a message containing data acquired from the sensor and for the transmitter to transmit the message wirelessly via the antenna.
Owner:SECURAPLANE TECH

System and method for enhanced thermophotovoltaic generation

InactiveUS20050109386A1Reduce fossil fueled NOx emissionIncreasing burner efficiencyThermoelectric device with peltier/seeback effectPV power plantsThermophotovoltaicDistributed generation
A system and method for lower cost, high efficiency, thermophotovoltaic distributed generation includes: an emitter, a photovoltaic cell, and transient electrical energy storage.
Owner:PRACTICAL TECH

Electrical-energy-storage unit (EESU) utilizing ceramic and integrated-circuit technologies for replacement of electrochemical batteries

An electrical-energy-storage unit (EESU) has as a basis material a high-permittivity composition-modified barium titanate ceramic powder. This powder is double coated with the first coating being aluminum oxide and the second coating calcium magnesium aluminosilicate glass. The components of the EESU are manufactured with the use of classical ceramic fabrication techniques which include screen printing alternating multilayers of nickel electrodes and high-permittivitiy composition-modified barium titanate powder, sintering to a closed-pore porous body, followed by hot-isostatic pressing to a void-free body. The components are configured into a multilayer array with the use of a solder-bump technique as the enabling technology so as to provide a parallel configuration of components that has the capability to store electrical energy in the range of 52 kW·h. The total weight of an EESU with this range of electrical energy storage is about 336 pounds.
Owner:EESTOR

Method and apparatus for control of a hybrid electric vehicle to achieve a target life objective for an energy storage device

A method for determining a preferred operating gradient for use in attaining a life objective for an electrical energy storage device in a hybrid vehicle is disclosed. A present state-of-life of the electrical energy storage device is provided and a life target for the electrical energy storage device is established as a predetermined limit in a predetermined metric at a predetermined state-of-life of the electrical energy storage device. A state-of-life gradient is then determined with respect to the predetermined metric which converges the state-of-life of the electrical energy storage device to the life target.
Owner:GM GLOBAL TECH OPERATIONS LLC

Method and apparatus for real-time life estimation of an electric energy storage device in a hybrid electric vehicle

A hybrid vehicular powertrain includes an electrical energy storage device. State-of-life for the electrical energy storage device is predictively determined based on electrical current, state-of-charge, and temperature of the electrical energy storage device during active and quiescent periods of operation.
Owner:GM GLOBAL TECH OPERATIONS LLC

Method and apparatus for determining the effect of temperature upon life expectancy of an electric energy storage device in a hybrid electric vehicle

A hybrid vehicular powertrain includes an electrical energy storage device. A method is disclosed effective to account for the effects that temperature during periods of vehicle inactivity has upon the electrical energy storage device.
Owner:GM GLOBAL TECH OPERATIONS LLC

Method for controlling engine speed in a hybrid electric vehicle

A method for controlling operation of a hybrid powertrain is proposed, the hybrid powertrain comprising an internal combustion engine, an electric energy storage device, an electric machine, and an electro-mechanical transmission. The engine and the electric machine and the transmission are operative to transmit torque therebetween to generate an output. The method comprises determining optimum engine operation and an engine capability, and an operator torque request. A limit to the engine capability is determined based upon optimum engine operation, engine capability, and states of the parameters of the electrical energy storage device. Power limits are determined. The limit to the engine capability is adjusted based upon the power limits of the energy storage device. The engine operation is controlled based upon the engine capability and the adjusted limit to the engine capability.
Owner:GM GLOBAL TECH OPERATIONS LLC

Method and apparatus for management of an electric energy storage device to achieve a target life objective

A method for determining a preferred operating gradient for use in attaining a life objective for an electrical energy storage device is disclosed. A present state-of-life of the electrical energy storage device is provided and a life target for the electrical energy storage device is established as a predetermined limit in a predetermined metric at a predetermined state-of-life of the electrical energy storage device. A state-of-life gradient is then determined with respect to the predetermined metric which converges the state-of-life of the electrical energy storage device to the life target.
Owner:GM GLOBAL TECH OPERATIONS LLC

Apparatus, system, and method to manage the generation and use of hybrid electric power

An apparatus, system, and method are disclosed to manage the generation and use of hybrid electric power. A monitoring module receives signals from one or more sensors. The signals comprise power level information of an electric energy storage device, power level information of one or more energy converters, and power level information of an electric load. A determination module compares the signals to determine whether electric power from the energy converters satisfies the electric load. A regulation module adjusts the electric power from the energy converters in response to a determination by the determination module that the electric power from the energy converters does not satisfy an electric load threshold.
Owner:TRULITE INC

Method for operating a hybrid electric powertrain based on predictive effects upon an electrical energy storage device

A hybrid electric powertrain includes an electrical energy storage device and electric machines. A method for operating the powertrain is disclosed to control the electric machines effective to attain a predetermined state of life profile for the electric energy storage device.
Owner:GM GLOBAL TECH OPERATIONS LLC

Method and apparatus for real-time life estimation of an electric energy storage device

Sate-of-life for an electrical energy storage device is predictively determined based on electrical current, state-of-charge, and temperature of the electrical energy storage device during active and quiescent periods of operation.
Owner:GM GLOBAL TECH OPERATIONS LLC

Method and apparatus for predicting change in an operating state of an electric energy storage device

A method for predicting change in an operating state, e.g. state of life, for an electrical energy storage device includes establishing a plurality of values for an operating parameter, e.g. current, of the electrical energy storage device and, for each respective value, determining a corresponding change in the operating state for the energy storage device based upon the respective value. Preferably, change in the state of life is determined based upon an integration of electrical current, a depth of discharge of the energy storage device, and an operating temperature factor of the electrical energy storage device.
Owner:GM GLOBAL TECH OPERATIONS LLC

High-amperage energy storage device and method

An electrochemical method and apparatus for high-amperage electrical energy storage features a high-temperature, all-liquid chemistry. The reaction products created during charging remain part of the electrodes during storage for discharge on demand. In a simultaneous ambipolar electrodeposition cell, a reaction compound is electrolyzed to effect transfer from an external power source; the electrode elements are electrodissolved during discharge.
Owner:MASSACHUSETTS INST OF TECH

Method and apparatus for quantifying quiescent period temperature effects upon an electric energy storage device

A electrical energy storage device may experience quiescent periods of operation. A method is disclosed effective to account for the effects that temperature during quiescent periods has upon the electrical energy storage device.
Owner:GM GLOBAL TECH OPERATIONS LLC

Methods of using fuel cell system configured to provide power to one or more loads

A fuel cell system is described for providing primary and / or auxiliary / backup power to one or more loads selected from the group comprising: lawn & garden equipment; radios; telephone; targeting equipment; battery rechargers; laptops; communications devices; sensors; night vision equipment; camping equipment; stoves; lanterns; lights; vehicles; cars; recreational vehicles; trucks; boats; ferries; motorcycles; motorized scooters; forklifts; golf carts; lawnmowers; industrial carts; passenger carts (airport); luggage handling equipment (airports); airplanes; lighter than air crafts; blimps; dirigibles; hovercrafts; trains; locomotives; submarines (manned and unmanned); torpedoes; security systems; electrical energy storage devices for solar-based, tidal-based, hydro-based, wind-based, and other renewable energy source; equipment for which a primary and / or backup power source is necessary or desirable to enable the equipment to function for its intended purpose, military-usable variants of above, and suitable combinations of any two or more thereof. The system provides power to the one or more loads upon the occurrence of a power outage condition, which includes a disruption or discontinuation in the delivery of primary power (i.e., power from a system-external primary source, namely, a source other than the fuel cell system) to, or power demand condition by, the one or more loads. A controller senses outage of primary power to, or demand for primary power by, the one or more loads, and, responsive thereto, operatively engages one or more fuel cells to provide power to the one or more loads.
Owner:METALLIC POWER INC

Dynamically limiting vehicle operation for best effort economy

Vehicle operation (e.g., speed, acceleration) may be limited based on various conditions such as a current charge condition of an electrical energy storage devices (e.g., batteries, super- or ultracapacitors), history of such, conditions related to the vehicle (e.g., mileage, weight, size, drag coefficient), a driver or operator of the vehicle (e.g., history with respect to speed, acceleration, mileage) and / or environmental conditions (e.g., ambient temperature, terrain). A controller may control operation of one or more power converters to limit current and / or voltage supplied to a traction electric motor, accordingly.
Owner:GOGORO

System and method for determining and balancing state of charge among series connected electrical energy storage units

A system and method for determining and balancing state of charge among plural series connected electrical energy storage units is provided. State of change of a selected storage unit in a string of storage units is determined by (i) applying a non-dissipative load to the selected storage unit, resulting in an energy transfer between the selected storage unit and the string of electrical energy storage units through the non-dissipative load and (ii) determining the state of charge of the selected unit from voltage and current data of the selected storage unit resulting from the energy transfer. When the state of charge of the selected unit is different than a target state of charge, energy can be transferred between the selected unit and the string of storage units, such that the state of charge of the selected unit converges toward the target state of charge.
Owner:TIAX LLC

System and method for balancing state of charge among series-connected electrical energy storage units

A system and method of balancing state of charge among plural series connected electrical energy storage unit is provided. Individual storage units are selectively coupled by semiconductor switches for monitoring and balancing state of charge. When the state of charge of a selected unit is greater than a target state of charge, energy is transferred from the selected unit to the string of storage units, such that the state of charge of the selected unit converges toward the target state of charge. Conversely, when the state of charge of a selected unit is less than a target state of charge, energy is transferred from the string of storage units to the selected unit, such that the state of charge of the selected unit converges toward the target state of charge.
Owner:TIAX LLC

Hybrid energy off highway vehicle electric power storage system and method

An electrical energy capture system for use in connection with a hybrid energy off highway vehicle system of a off highway vehicle. The hybrid energy off highway vehicle system includes an off highway vehicle, a primary power source, and an off highway vehicle traction motor propelling the off highway vehicle in response to the primary electric power. The off highway vehicle traction motor has a dynamic braking mode of operation generating electrical energy. The electrical energy capture system includes an energy management processor carried on the off highway vehicle. The capture system also includes an off highway vehicle electric generator connected to and driven by the primary power source for selectively supplying primary electric power, wherein the generator is responsive to said processor. An electrical energy storage device is carried on a off highway vehicle and is in electrical communication with the off highway vehicle traction motor. The storage device is responsive to the processor, selectively stores electrical energy generated in the dynamic braking mode, and selectively provides secondary electric power from said stored electricity electrical energy to the off highway vehicle traction motor. The off highway vehicle traction motor is responsive to the secondary electric power. The processor provides a first control signal to the electrical energy storage device to control the selective storing of the electrical energy generated in the dynamic braking mode, and to control the selective providing of secondary electric power to the off highway vehicle traction motor. The processor also provides a second control signal to the generator for controlling the selective supplying of primary electric power to the off highway vehicle traction motor.
Owner:GENERAL ELECTRIC CO

Apparatus, method and article for providing vehicle diagnostic data

A network of collection, charging and distribution machines collects, charges and distributes portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors). Vehicle diagnostic data of a vehicle using the portable electrical energy storage device is stored on a diagnostic data storage system of the portable electrical energy storage device during use of a respective portable electrical energy storage device by a respective vehicle. Once the user places the portable electrical energy storage device in the collection, charging and distribution machine, or comes within wireless communications range of a collection, charging and distribution machine, a connection is established between the collection, charging and distribution machine and the portable electrical energy storage device. The collection, charging and distribution machine then reads vehicle diagnostic data stored on the diagnostic data storage system of the portable electrical energy storage device and provides information regarding the diagnostic data.
Owner:GOGORO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products