Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

8775 results about "Hybrid vehicle" patented technology

A hybrid vehicle uses two or more distinct types of power, such as internal combustion engine to drive an electric generator that powers an electric motor, e.g. in diesel-electric trains using diesel engines to drive an electric generator that powers an electric motor, and submarines that use diesels when surfaced and batteries when submerged. Other means to store energy include pressurized fluid in hydraulic hybrids.

System and method for minimizing energy consumption in hybrid vehicles

The present invention provides a system and method relating to the operation of plug-in hybrid electric vehicles powered both by electricity from rechargeable batteries and by consumable fuel powered means, such as an internal combustion engine or a fuel cell. More particularly, the system and method of the claimed invention enable optimization of the energy cost associated with the operation of such plug-in hybrid electric vehicles, especially when the cost of recharging batteries from external electric power sources may be less than the cost of recharging batteries from the onboard consumable fuel powered means. To this end, the invention enables maximization of the use of electricity from external electric power sources and minimization of the use of electricity produced by the plug-in hybrid electric vehicle's onboard consumable fuel powered means, when the cost of recharging batteries from external electric power sources is less than the cost of recharging batteries from the onboard consumable fuel powered means.
Owner:SLINGSHOT IOT LLC

Automatic recharging docking station for electric vehicles and hybrid vehicles

An automatic recharging docking station for electric vehicles or hybrid electric vehicles in which standardized uniform charging stations are positioned in public parking facilities, private parking facilities, rest stops, or the like, and by means of a retractable vehicle probe, allow the owner / user of the vehicle to attach to the charging station and recharge the batteries or storage cells of the vehicle while the owner / user is at work, shopping, or otherwise not requiring the use of the vehicle. The particular vehicle and vehicle probe would have an encrypted identification means so that its identity would be recorded when it connected to a particular recharging station, regardless of which electrical jurisdiction that charging station was located, such that the respective electric utility companies or other entity would be able to identify and bill the owner / user for the quantity of electricity drawn during a specified time period.
Owner:SUCHAR MICHAEL J

Wireless Charging System for Vehicles

A system of energy storage and charging usable in vehicles and other applications that eliminate the battery capacity and automotive range issues is described. In our invention, vehicles are equipped with charging mechanisms to charge and recharge onboard batteries using wireless electricity and power transmission using magnetic resonant coupling between tuned electromagnetic circuits. The batteries may be charged using wireless charging systems installed along the roads while the vehicle is in use on the road. Charging system may optionally utilize infrared laser beam radiation to transmit power for charging the batteries on board a vehicle while it is in use as well. The onboard vehicle batteries may also be charged when the vehicle is not being driven either by plugging in the vehicle into wall electricity using wired power connection or may be wirelessly charged using the magnetic resonant coupling. By locating the charging circuits on roads, a continuous operation of electric-only mode of hybrid vehicles or pure electric-only vehicles can be accomplished and fully eliminate the need for gasoline usage
Owner:PANDYA RAVI A +1

System and method for optimizing grid charging of an electric/hybrid vehicle

A vehicular charging system is provided that may be deployed on a vehicle configured to be charged from an external power source. The vehicular charging system comprises a battery assembly and a timer coupled to the battery assembly. The timer is configured to electrically couple the external power source to the battery assembly to commence charging the battery assembly at a predetermined charge initialization time.
Owner:GM GLOBAL TECH OPERATIONS LLC

Charging station for electric and plug-in hybrid vehicles

This invention is a pay charging station for electric and plugin hybrid vehicles. A vehicle parks at a space with the charging station and uses a credit card, debit card, cash, smart card or network connection to a database like EZ-Pass to pay for the space and the electricity. The station automatically charges the vehicle as long as it is connected to the station. The station automatically stops charging when the vehicle is fully charged. The customer only pays for the space and the electricity consumed. If the charging circuit is broken the customer must reinsert the smart card or credit card to restart charging. Sufficient funds are removed from the payment method on initiation of charging. Any money not used for charging is returned to the funding account upon the user reinserting the smart card, credit card or debit card, or cash change is returned if cash was the method of payment.
Owner:PALUSZEK MICHAEL ADAM +3

Hybrid-vehicle power train

A hybrid-vehicle power train connected to an engine comprises a motor, a CVT unit, a planetary gear unit having at least two input elements, namely, first and second input elements and an output element, a first clutch for engaging / disengaging the first input element with / from a final shaft of the power train, and a second clutch for engaging / disengaging the output element with / from the final shaft of the power train. An input shaft of the CVT unit is connected to the engine and is drivingly connected to the second input element. An output shaft of the CVT unit is connected to the first input element. The motor is connected to the output shaft of the CVT unit. According this configuration, motor torque is amplified and transmitted to the final shaft when the first clutch is engaged, while motor torque is transmit directly to the final shaft when the second clutch is engaged.
Owner:EQUOS RES

Power control unit

A hybrid vehicle includes an engine and a drive motor which adds power to power generated by the engine in a superimposed manner to assist the engine. A power control unit includes: a fourth rotor sensor as a vehicle speed sensor which detects vehicle speed of the hybrid vehicle; an accelerator sensor which detects an amount of accelerator operation; and an ECU having an assist map which determines an output command reference value for the drive motor based on the vehicle speed and the amount of accelerator operation. The ECU outputs, to the drive motor, a corrected output command value which is calculated by adding an additional value corresponding to a rate of change in the amount of accelerator operation, to the output command reference value obtained from the assist map.
Owner:HONDA MOTOR CO LTD

Controller for hybrid vehicle

InactiveUS6018694AGreat torque balanceStable vehicle behaviorWindingsPlural diverse prime-mover propulsion mountingElectricityControl system
A gas-sparing vehicle is achieved by a control system for a hybrid vehicle equipped at least with: a hybrid engine which includes at least a first rotary electric unit for deciding the rpm of the engine and a second rotary electric unit for deciding the driving force of the vehicle and which has power converting means connected to the output shaft of the engine; and electricity storing means. In one embodiment, a hybrid controller 16 controls the drive of a first rotary electric unit 2000 according to a startup torque command value which is decided based on the rpm of an engine at the time of engine startup and which decreases as the rpm increases; it also determines that the complete explosion in an engine 1 has occurred when the startup torque command value falls below a predetermined complete explosion judgment value.
Owner:DENSO CORP

Plug-in hybrid vehicle with fast energy storage

This invention relates to plug-in hybrid propulsion systems where the energy storage element of the hybrid drive train may be charged with externally supplied electricity as well as energy from the engine or regenerative braking. The invention is a plug-in hybrid system with a fast energy storage and delivery system. In a preferred embodiment the invention comprises a fuel powered engine, a battery, a fast energy storage system, power converters, controllers, drive motors, an electrical distribution system, and a drive train. Additionally, the invention relates to plug-in hybrids that provide services to the electrical utility when the vehicle is connected to the utility grid.
Owner:AFS TRINITY POWER CORP

Self-learning control system for plug-in hybrid vehicles

A system is provided to instruct a plug-in hybrid electric vehicle how optimally to use electric propulsion from a rechargeable energy storage device to reach an electric recharging station, while maintaining as high a state of charge (SOC) as desired along the route prior to arriving at the recharging station at a minimum SOC. The system can include the step of calculating a straight-line distance and / or actual distance between an orientation point and the determined instant present location to determine when to initiate optimally a charge depleting phase. The system can limit extended driving on a deeply discharged rechargeable energy storage device and reduce the number of deep discharge cycles for the rechargeable energy storage device, thereby improving the effective lifetime of the rechargeable energy storage device. This “Just-in-Time strategy can be initiated automatically without operator input to accommodate the unsophisticated operator and without needing a navigation system / GPS input.
Owner:UT BATTELLE LLC

Hybrid vehicle recharging system and method of operation

A system and method for recharging a plug-in hybrid vehicle. The system includes a controller that schedules the recharging of the vehicles on local electrical distribution networks. The system arranges the schedule to minimize the demand loading on the local distribution network to more efficiently operate power plants providing electrical power to the distribution networks. A system for collecting charges associated with the recharging of plug-in hybrid vehicles is also disclosed providing for prepaid utility accounts.
Owner:CONSOL EDISON OF NEW YORK

Coordinated regenerative and engine retard braking for a hybrid vehicle

ActiveUS20050255965A1Increases the engine retard braking contributionReduce contributionHybrid vehiclesBraking element arrangementsPower flowGear wheel
A hybrid vehicle includes a powertrain having a retarded diesel engine, an electric machine and energy storage system. The engine and motor are operatively coupled through one or more planetary gearsets and selective coupling paths in accordance with application and release of various torque transfer devices to a drivetrain via an output. Regenerative and retarded engine braking are coordinated to provide priority to energy return to an energy storage system in accordance with predetermined power flow limits. Power flow in excess of the limits are handled by increased engine retard braking contributions via engine speed increases.
Owner:ALLISON TRANSMISSION INC

Hybrid vehicle drive system and method and idle reduction system and method

One embodiment relates to a hybrid vehicle drive system for a vehicle including a first prime mover, a first prime mover driven transmission, a rechargeable power source, and a PTO. The hybrid vehicle drive system further includes a hydraulic motor in direct or indirect mechanical communication with the PTO and an electric motor in direct or indirect mechanical communication with the hydraulic motor. The electric motor can provide power to the prime mover driven transmission and receive power from the prime mover driven transmission through the PTO. The hydraulic motor can provide power to the prime mover driven transmission and receive power from the prime mover driven transmission through the PTO.
Owner:POWER TECH HLDG LLC

Engine retard operation scheduling and management in a hybrid vehicle

A hybrid vehicle includes a powertrain having a retarded diesel engine, an electric machine and energy storage system. The engine and motor are operatively coupled through one or more planetary gearsets and selective coupling paths in accordance with application and release of various torque transfer devices to a drivetrain via an output. Regenerative and retarded engine braking are coordinated to provide priority to energy return to an energy storage system in accordance with predetermined power flow limits.
Owner:GM GLOBAL TECH OPERATIONS LLC

Method of controlling engine stop-start operation for heavy-duty hybrid-electric and hybrid-hydraulic vehicles

This invention relates to a Start-Stop method for a heavy-duty hybrid vehicle that turns off the internal combustion engine when the vehicle stops or, optionally, when the vehicle travels downhill. The Stop-Start method automatically restarts the internal combustion engine when the vehicle starts accelerating or is no longer traveling downhill. The software instructions for the Stop-Start method reside within the programming of the hybrid vehicle control computer as a subset of the hybrid vehicle control strategy in hybrid-electric or hybrid-hydraulic heavy-duty vehicle. During the time the internal combustion engine is turned off the necessary vehicle accessories operate from the available power of the hybrid high power energy storage.
Owner:SHEPPARD MULLIN RICHTER & HAMPTON

Method and apparatus for control of a hybrid electric vehicle to achieve a target life objective for an energy storage device

A method for determining a preferred operating gradient for use in attaining a life objective for an electrical energy storage device in a hybrid vehicle is disclosed. A present state-of-life of the electrical energy storage device is provided and a life target for the electrical energy storage device is established as a predetermined limit in a predetermined metric at a predetermined state-of-life of the electrical energy storage device. A state-of-life gradient is then determined with respect to the predetermined metric which converges the state-of-life of the electrical energy storage device to the life target.
Owner:GM GLOBAL TECH OPERATIONS LLC

Hybrid vehicle with combustion engine/electric motor drive

A vehicle including a prime mover, a generator mechanically coupled to the prime mover, a first multi-input drive unit having at least first and second rotational inputs and at least one rotational output wherein the first rotational input is coupled to the prime mover, a first electric motor mechanically coupled to the second rotational input and electrically coupled to the generator and a first pair of vehicle drive wheels coupled to the rotational output.
Owner:OSHKOSH CORPORATION

Method of controlling engine stop-start operation for heavy-duty hybrid-electric and hybrid-hydraulic vehicles

A start-stop or idle-stop method for a heavy-duty hybrid vehicle that turns off the fuel supply while maintaining the crankshaft rotation of the internal combustion engine when the vehicle stops or, optionally, when the vehicle travels downhill, travels in a noise sensitive location, travels in an exhaust emissions sensitive location, or operates in an emergency situation. The stop-start or idle-stop method automatically turns on the engine fuel supply to restart combustion when the vehicle starts accelerating, is no longer traveling downhill, is no longer traveling in a noise sensitive or exhaust sensitive location, is no longer in an emergency situation, or has dropped below the minimum energy storage restart level.
Owner:SHEPPARD MULLIN RICHTER & HAMPTON

Self-learning control system for plug-in hybrid vehicles

A system is provided to instruct a plug-in hybrid electric vehicle how optimally to use electric propulsion from a rechargeable energy storage device to reach an electric recharging station, while maintaining as high a state of charge (SOC) as desired along the route prior to arriving at the recharging station at a minimum SOC. The system can include the step of calculating a straight-line distance and / or actual distance between an orientation point and the determined instant present location to determine when to initiate optimally a charge depleting phase. The system can limit extended driving on a deeply discharged rechargeable energy storage device and reduce the number of deep discharge cycles for the rechargeable energy storage device, thereby improving the effective lifetime of the rechargeable energy storage device. This “Just-in-Time strategy can be initiated automatically without operator input to accommodate the unsophisticated operator and without needing a navigation system / GPS input.
Owner:UT BATTELLE LLC

Method and apparatus for real-time life estimation of an electric energy storage device in a hybrid electric vehicle

A hybrid vehicular powertrain includes an electrical energy storage device. State-of-life for the electrical energy storage device is predictively determined based on electrical current, state-of-charge, and temperature of the electrical energy storage device during active and quiescent periods of operation.
Owner:GM GLOBAL TECH OPERATIONS LLC

Method of thermal management for a hybrid vehicle

A method of thermal management for a thermal management system in a vehicle includes the steps of selecting a thermal management function. The method also includes the steps of adjusting a temperature within the thermal management system using the thermal management function and using the adjusted temperature within the thermal management system to control a temperature within an occupant compartment of the vehicle.
Owner:VISTEON GLOBAL TECH INC

Hybrid vehicle formed by converting a conventional IC engine powered vehicle and method of such conversion

A method of converting a conventional internal combustion powered vehicle into a hybrid vehicle and apparatus for achieving that and modifying one of the serial elements of the drive train interconnecting the internal combustion to the driving wheels of the vehicle by providing an auxiliary power connection which allows the motor / generator to provide or remove mechanical power from the drive train during driving operation or regenerative braking. Generators switchingly connected to a vehicle battery and an electronic controller intercede the system relative to the operation of the vehicle and control the motor / generator switching the vehicle engine to apply an electric drive power to the vehicle at appropriate points in the vehicle operation and to drive the generator during braking of the vehicle to recharge the power source. The electric drive power elements are supported on a cross-member added to the vehicle.
Owner:HYBRID ELECTRIC CONVERSION

Multiple power source system and apparatus, motor driving apparatus, and hybrid vehicle with multiple power source system mounted thereon

In a multiple power source system of the present invention that has an inverter connected to a reactance, such as three-phase coils in a motor, a high voltage battery is connected with a low voltage battery via one transistor (Tr2) and one diode (D2) included in the inverter and one phase coil (U-phase coil) of the three-phase motor. The transistor Tr2 is turned on to make the electric current flow from the low voltage battery to the U-phase coil. The transistor Tr2 is subsequently turned off at a preset timing, so that the electric energy accumulated in the reactance, that is, the U-phase coil, flows through the diode D1 into the high voltage battery and thereby charges the high voltage battery. This arrangement enables the charging process from the low voltage battery to the high voltage battery without any complicated circuit structure for the voltage step-up. The three-phase motor may be unipolar driven with transistors connected to one side of the inverter. The arrangement of the present invention does not require any complicated structure, which undesirably increases the size of the multiple power source system, in order to ensure mutual supplement of the electric energy between electric systems having a large difference in voltage, for example, an electric system for driving a hybrid vehicle and an electric system for its control circuit.
Owner:TOYOTA JIDOSHA KK

Method and arrangement in a hybrid vehicle for improving battery state-of-charge control and minimizing driver perceptible disturbances

Method for minimizing driver perceptible drive train disturbances during take-off in a hybrid electric vehicle when maximized power is often desired is disclosed. The method includes sensing an actual state-of-charge (SOC) value of a battery in a hybrid electric vehicle and a traveling velocity of the vehicle during take-off operation. The sensed actual SOC value is compared with a SOC reference value and computing a delta SOC value as a difference therebetween. A velocity-based SOC calibration factor is looked up that corresponds to the traveling velocity of the vehicle. A combination is utilized of the delta SOC value and the SOC calibration factor as a SOC feedback engine speed control instruction to an engine controller of the hybrid electric vehicle. A driver's desired vehicular acceleration is sensed based on accelerator position. Maximum possible engine power generatable at the sensed vehicle speed is determined, as is a required power value from the power train of the vehicle to meet the driver's desired vehicular acceleration. The maximum possible engine power generatable at the sensed vehicle speed is compared with the required power value and computing a delta power train requirement value as a difference therebetween. A velocity-based and accelerator position-based power calibration factor is looked-up that corresponds to the traveling velocity of the vehicle and the accelerator position. A combination of the delta power train requirement value and the power calibration factor is utilized as a power requirement feed-forward engine speed control instruction to an engine controller of the hybrid electric vehicle.
Owner:VOLOVO CAR CORP

Hybrid electric tool carrier

A hybrid utility vehicle includes a tool-supporting frame and an electrical power source driven by an engine. Right and left rear wheels independently driven by permanent magnet electric motors and front wheels electrically steerable over a range of approximately 180 degrees operate under the control of a vehicle controller responsive to steering and speed input controls to provide zero turn radius operation with minimum slippage and tire scuffing. Space efficiency provided by the electric steering and an electrically driven tool deck facilitate a variety of tool mounting configurations including a rear discharge deck with a chute passing under the vehicle frame between the driven wheels. An inverter connected to the electrical power source provides 110 / 220 volt output. The power source also functions as a high powered, high rpm, low noise starter motor.
Owner:DEERE & CO

Driver Feedback to Improve Vehicle Performance

A system for a hybrid vehicle driver by an operator, comprising of an energy storage device, a regenerative braking system coupled to the energy storage device, a dissipative braking system coupled to the vehicle, a brake lever, a haptic operator interface, and a control system for operating one or both of the regenerative and dissipative braking system in response to actuation of the brake lever, and providing feedback to the operator through the haptic interface differentiating a type of braking operation.
Owner:FORD GLOBAL TECH LLC

Moving object with fuel cells incorporated therein and method of controlling the same

InactiveUS20060113129A1Excellent fuel consumption and environmental propertyAvoid confusionDigital data processing detailsTransmission elementsFuel cellsElectrical battery
In a hybrid vehicle with fuel cells and an engine mounted thereon as energy output sources, the technique of the present invention adequately changes a working energy output source according to a driving state of the hybrid vehicle. The hybrid vehicle has the engine and a motor, both enabling power to be output to an axle. The hybrid vehicle also has fuel cells as a main electric power supply for driving the motor. The technique of the present invention changes the working energy output source between the fuel cells and the engine, in order to reduce the output of the fuel cells with consumption of a fuel for the fuel cells. With a decrease in remaining quantity of the fuel, the technique narrows a specific driving range, in which the motor is used as the power source. The technique also causes the engine to drive the motor as a generator and charges a battery not with electric power of the fuel cells but with electric power generated by the motor. This arrangement effectively prevents the fuel for the fuel cells from being excessively consumed in one driving mode. The fuel cells can thus be used preferentially in a specific driving state of the hybrid vehicle where the fuel cells have a high efficiency.
Owner:TOYOTA JIDOSHA KK

Method of Controlling Engine Stop-Start Operation for Heavy-Duty Hybrid-Electric Vehicles

A start-stop or idle-stop method for a heavy-duty hybrid vehicle that turns off the fuel supply while maintaining the crankshaft rotation of the internal combustion engine when the vehicle stops or, optionally, when the vehicle travels downhill, travels in a noise sensitive location, travels in an exhaust emissions sensitive location, or operates in an emergency situation. The stop-start or idle-stop method automatically turns on the engine fuel supply to restart combustion when the vehicle starts accelerating, is no longer traveling downhill, is no longer traveling in a noise sensitive or exhaust sensitive location, is no longer in an emergency situation, or has dropped below the minimum energy storage restart level. The stop-start or idle-stop may be inhibited upon certain override conditions.
Owner:SHEPPARD MULLIN RICHTER & HAMPTON
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products