Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

5290 results about "Battery capacity" patented technology

Battery pack having memory

In an exemplary embodiment, a battery conditioning system monitors battery conditioning and includes a memory for storing data based thereon; for example, data may be stored representative of available battery capacity as measured during a deep discharge cycle. With a microprocessor monitoring battery operation of a portable unit, a measure of remaining battery capacity can be calculated and displayed. Where the microprocessor and battery conditioning system memory are permanently secured to the battery so as to receive operating power therefrom during storage and handling, the performance of a given battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use and other relevant parameters. In the case of a nonportable conditioning system, two-way communication may be established with a memory associated with the portable unit so that the portable unit can transmit to the conditioning system information concerning battery parameters (e.g. rated battery capacity) and/or battery usage (e.g. numbers of shallow discharge and recharge cycles), and after a conditioning operation, the conditioning system can transmit to the portable unit a measured value of battery capacity, for example. A battery pack having memory stores battery history and identifying data to be retrieved by a portable battery powered device. Battery status information may be utilized in conjunction with characteristic battery history data in order to optimize charging and discharging functions and to maximize the useful life of a battery pack.
Owner:INTERMEC

Pet robot charging system

Image data obtained by image-capturing by a pet robot is stored in a memory, and any of conditions whether the memory capacity is scarce, a captured image transfer instruction is made, or the battery capacity of the pet robot is scarce is satisfied, the pet robot is controlled to move to the charging apparatus. When the pet robot arrives at the charging apparatus, the image data is transferred to the charging apparatus. When the completion of transfer of the image data is detected, the image data already transferred is erased depending upon selection by the user.
Owner:FUJIFILM HLDG CORP +1

Combined estimation method for lithium ion battery state of charge, state of health and state of function

The invention provides a combined estimation method for lithium ion battery state of charge, state of health and state of function. The combined estimation method comprises the steps that the state of he---alth of a battery is estimated online: open circuit voltage and internal resistance are identified online by adopting a recursive least square method with a forgetting factor, the state of charge is indirectly acquired according to a pre-established OCV-SOC corresponding relation, and then the size of battery capacity is estimated according to cumulative charge and discharge electric charge between two SOC points; the state of charge of the battery is estimated online: the state of charge of the battery is estimated by adopting the Kalman filter algorithm based on a two-order RC equivalent circuit model, and the battery capacity parameter in the Kalman filter algorithm is updated according to the estimation result of battery capacity; and the state of function of the battery is estimated online: the maximum chargeable and dischargeable current is calculated based on the voltage limit and the current limit of the battery according to internal resistance obtained by online identification, and then the maximum chargeable and dischargeable function can be obtained through further calculation.
Owner:TSINGHUA UNIV

Battery capacity measuring and remaining capacity calculating system

A battery capacity measuring device in accordance with the present invention has a fully-charged state detector (80e), a detected current integrator (80a), a divider (80b), and a corrector (80c) incorporated in a microcomputer (80). The fully-charged state detector detects that a battery is fully charged. The detected current integrator integrates current values that are detected by a current sensor during a period from the instant the battery is fully charged to the instant it is fully charged next. The divider divides the integrated value of detected current values by the length of the period. The corrector corrects a detected current using the quotient provided by the divider as an offset. Furthermore, a remaining battery capacity calculating system comprises a voltage detecting unit (50), a current detecting unit (40), an index calculating unit, a control unit, and a calculating unit. The voltage detecting unit detects the voltage at the terminals of a battery. The current detecting unit detects a current flowing through the battery. The index calculating unit calculates the index of polarization in the battery according to the detected current. The control unit controls the output voltage of an alternator so that the index of polarization will remain within a predetermined range which permits limitation of the effect of polarization on the charged state of the battery. When the index of polarization remains within the predetermined range, the calculating unit calculates the remaining capacity of the battery according to the terminal voltage of the battery, that is, the open-circuit voltage of the battery.
Owner:TOYOTA JIDOSHA KK +1

Negative pole for a secondary cell, secondary cell using the negative pole, and negative pole manufacturing method

An anode for a secondary battery capable of inserting and extracting a lithium ion having a multi-layered structure including a first anode layer (2a) containing carbon as a main component; a second anode layer (3a) made of a film-like material through which a lithium component passes; and a third anode layer (4a) containing lithium and / or a lithium-containing compound as a main component. The battery capacity of the lithium ion battery is substantially increased while the higher charge-discharge efficiency and the stable cycle performance are maintained.
Owner:NEC CORP

SOH (state-of-health) online estimation method of battery pack

The invention relates to an SOH (state-of-health) online estimation method of a battery pack. The SOH online estimation method comprises the following steps of: measuring temperature T, voltage V and current I of an electric automobile during actual operation to acquire the following function: SOC (state-of-charge)=f(T, V, I) by utilizing a normalization algorithm, establishing a database with one-to-one correspondence between the temperature T, the voltage V and the current I and the SOC, measuring the SOC of a monomer battery with lowest voltage in an online manner by utilizing the database, and further measuring the SOH of the battery pack. The SOH online estimation method disclosed by the invention has the beneficial effects that: 1) as the measured SOC is that of the monomer battery with the lowest voltage, which is a key factor for restricting the discharge capacity of the battery pack, a user can know the SOH of the batteries in a more visual manner, the remaining capacity of the batteries can be judged in a more accurate manner by combining with the SOC value, and the continue voyage course of the electric automobile can be estimated in a more accurate manner; and 2) if the problem is caused by attenuation of the battery capacity, the problem can be obviously seen through the SOH, and the efficiency of after-sale service is improved.
Owner:HUIZHOU EPOWER ELECTRONICS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products