Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

32443results about "Power supply for data processing" patented technology

System, method, and architecture for dynamic server power management and dynamic workload management for multi-server environment

Network architecture, computer system and / or server, circuit, device, apparatus, method, and computer program and control mechanism for managing power consumption and workload in computer system and data and information servers. Further provides power and energy consumption and workload management and control systems and architectures for high-density and modular multi-server computer systems that maintain performance while conserving energy and method for power management and workload management. Dynamic server power management and optional dynamic workload management for multi-server environments is provided by aspects of the invention. Modular network devices and integrated server system, including modular servers, management units, switches and switching fabrics, modular power supplies and modular fans and a special backplane architecture are provided as well as dynamically reconfigurable multi-purpose modules and servers. Backplane architecture, structure, and method that has no active components and separate power supply lines and protection to provide high reliability in server environment.
Owner:HURON IP

System and method for reducing external battery capacity requirement for a wireless card

A system for providing power to a wireless card includes power interface that provides power to a compact flash card. A boost regulator boosts the power from the power interface. A battery provides power that is summed with the power from the power interface. Moreover, a buck regulator limits the voltage of the summed power. A compact flash card can be powered by the power interface while a wireless card can be powered by the summed power.
Owner:SONY CORP +1

System and method for highly phased power regulation using adaptive compensation control

A highly phased power regulation (converter) system having an improved control feature is provided. A controller, such as a digital signal processor or microprocessor, receives digital information from a plurality of power conversion blocks and transmits control commands in response to the information. The controller is able to change the mode of operation of the system and / or re-phase the power blocks to accommodate a dynamic load requirement, occasions of high transient response or detection of a fault. A compensation block within the controller is used to regulate the output voltage and provide stability to the system. In one embodiment, the controller is implemented as a PID compensator controller. In another embodiment, a microprocessor is able to receive feedback on its own operation thus providing enabling the controller to anticipate and predict conditions by analyzing precursor data.
Owner:INFINEON TECH AUSTRIA AG

Optimization of microgrid energy use and distribution

An energy distribution may include a server and one or more databases. The system may communicate with an energy provider to receive energy provider data, at least one information collector to receive information collector data such as individualized energy usage data, customer preferences, and customer or location characteristics, and the one or more databases for receiving data for optimization. The system may calculate a cost of service or avoided cost using at least one of the individualized energy usage data and a system generation cost at a nearest bus. The system may also forecast individualized demand by end-use, individualized demand by location, energy prices, or energy costs. The system may optimize energy distribution, energy use, cost of service, or avoided cost using the forecasted individualized demand by end-use, the forecasted individualized demand by location, the forecasted energy prices, and the forecasted energy costs.
Owner:INTEGRAL ANALYTICS

Log-on service providing credential level change without loss of session continuity

A security architecture has been developed in which a single sign-on is provided for multiple information resources. Rather than specifying a single authentication scheme for all information resources, the security architecture associates trust-level requirements with information resources. Authentication schemes (e.g., those based on passwords, certificates, biometric techniques, smart cards, etc.) are employed depending on the trust-level requirement(s) of an information resource (or information resources) to be accessed. Once credentials have been obtained for an entity and the entity has been authenticated to a given trust level, access is granted, without the need for further credentials and authentication, to information resources for which the authenticated trust level is sufficient. The security architecture allows upgrade of credentials for a given session. This capability is particularly advantageous in the context of a single, enterprise-wide log-on. An entity (e.g., a user or an application) may initially log-on with a credential suitable for one or more resources in an initial resource set, but then require access to resource requiring authentication at higher trust level. In such case, the log-on service allows additional credentials to be provided to authenticate at the higher trust level. The log-on service allows upgrading and / or downgrading without loss of session continuity (i.e., without loss of identity mappings, authorizations, permissions, and environmental variables, etc.).
Owner:ORACLE INT CORP

Power semiconductor devices and methods of manufacture

Various embodiments for improved power devices as well as their methods of manufacture, packaging and circuitry incorporating the same for use in a wide variety of power electronic applications are disclosed. One aspect of the invention combines a number of charge balancing techniques and other techniques for reducing parasitic capacitance to arrive at different embodiments for power devices with improved voltage performance, higher switching speed, and lower on-resistance. Another aspect of the invention provides improved termination structures for low, medium and high voltage devices. Improved methods of fabrication for power devices are provided according to other aspects of the invention. Improvements to specific processing steps, such as formation of trenches, formation of dielectric layers inside trenches, formation of mesa structures and processes for reducing substrate thickness, among others, are presented. According to another aspect of the invention, charge balanced power devices incorporate temperature and current sensing elements such as diodes on the same die. Other aspects of the invention improve equivalent series resistance (ESR) for power devices, incorporate additional circuitry on the same chip as the power device and provide improvements to the packaging of charge balanced power devices.
Owner:SEMICON COMPONENTS IND LLC

Power save management with customized range for user configuration and tuning value based upon recent usage

A method and system for efficiently managing power consumption in a mobile device controls power consumption with an adjustable sleep period or listening interval that may be user-specified and automatically tuned based on recent detected usage. With an adjustable sleep period, a receiver conserves power by leaving a sleep mode only at predefined and adjustable periods, which may be selected by the user to balance connectivity and power saving and which may be automatically incremented when the device activity is low.
Owner:ADVANCED MICRO DEVICES INC

Advanced continuous analyte monitoring system

Systems and methods for processing, transmitting, and displaying data received from a continuous analyte (e.g., glucose) sensor are provided. A sensor system can comprise a sensor electronics module that includes power saving features, e.g., a low power measurement circuit that can be switched between a measurement mode and a low power mode, wherein charging circuitry continues to apply power to electrodes of a sensor during the low power mode. The sensor electronics module can be switched between a low power storage mode and a higher power operational mode via a switch, e.g., a reed switch or optical switch. A validation routine can be implemented to ensure an interrupt signal sent from the switch is valid. The sensor can be physically connected to the sensor electronics module in direct wireless communication with a plurality of different display devices.
Owner:DEXCOM

Optimization of microgrid energy use and distribution

Systems and methods for energy optimization may receive receiving energy provider data, near-real time individualized energy usage data for each of a plurality of end-uses or near-real time individualized whole premise energy usage data, customer preferences, and near-real time and forecasted weather information. The systems and methods may forecast, for a selected time period, individualized energy usage for each of the plurality of end-uses or individualized whole premise energy usage data for a customer location using: (1) the energy provider data, (2) the near-real time individualized energy usage data, (3) the customer preferences, and (4) the near-real time and forecasted weather information. The systems and methods may optimize, for the selected time period, energy usage at the customer location using (1) the individualized energy usage, (2) the energy provider data, and (3) the customer preferences.
Owner:INTEGRAL ANALYTICS

Modular electrical grid interface device

A smart grid gateway which includes a onboard computer programmed to provide load measurement and control of at least one local resource or asset. At least one metrology module is configured to provide metering of the at least one local resource or asset. At least one LAN module is configured to communicate with the at least one local resource or asset. At least one WAN module is configured to communicate with a network operations center.
Owner:GRIDPOINT

Methods and apparatus for contactless gesture recognition

Systems and methods are described for performing contactless gesture recognition for a computing device, such as a mobile computing device. An example technique for managing a gesture-based input mechanism for a computing device described herein includes identifying parameters of the computing device relating to accuracy of gesture classification performed by the gesture-based input mechanism and managing a power consumption level of at least an infrared (IR) light emitting diode (LED) or an IR proximity sensor of the gesture-based input mechanism based on the parameters of the computing device.
Owner:QUALCOMM INC

Dynamically selecting processor cores for overall power efficiency

A computer system for conserving operating power includes a number of computer hardware processor cores that differ amongst themselves in at least in their respective operating power requirements and processing capabilities. A monitor gathers performance metric information from each of the computer hardware processor cores that is specific to a particular run of application software then executing. A workload transfer mechanism transfers the executing application software to a second computer hardware processor core in a search for reduced operating power. A transfer delay mechanism is connected to delay a subsequent transfer of the executing application software if the system operating power may be conserved by such delay.
Owner:HEWLETT PACKARD DEV CO LP

Power Transmission Device, Power Transmission Method, Program, Power Receiving Device and Power Transfer System

There is provided a power transmission device including a communication part that performs communication with an external power transmission device that transmits power, a power transmission part that transmits power to a power receiving device that receives the transmitted power in a non-contact manner, a determination part that determines whether power can be transmitted, based on external power transmission information received by the communication part indicating a start of power transmission by the external power transmission device, and a power transmission control part that controls the power transmission part to selectively transmit power based on a determination result from the determination part.
Owner:SONY CORP

Context-aware smart home energy manager

A context-aware smart home energy management (CASHEM) system and method is disclosed. CASHEM dynamically schedules household energy use to reduce energy consumption by identifying contextual information within said household, selecting a comfort of service preference, wherein said comfort of service preference is based on different said contextual information, and extracting an appliance use schedule for maximum energy savings based on said contextual information in light of said comfort of service preferences, by executing a program instruction in a data processing apparatus. CASHEM correlates said contextual information with energy consumption levels to dynamically schedule said appliance based on an energy-saving condition and a user's comfort. Comfort of service preferences are gathered by CASHEM by monitoring occupant activity levels and use of said appliance. CASHEM can also recommend potential energy savings for a user to modify comfort of service preferences.
Owner:HONEYWELL INT INC

Power Transmitting Apparatus, Power Transmission Method, Program, and Power Transmission System

There is provided a power transmitting apparatus including a power transmission side communication unit for communicating with one or more power receiving apparatus for receiving transmitted power; a power transmission unit for transmitting power to the one or more power receiving apparatus in a non-contact manner; an allocating unit for dividing transmission of power from the power transmission unit to the power receiving apparatus to a plurality of dividing periods for every predetermined period, and allocating the one or more power receiving apparatus to one of the dividing periods; and a power transmission control unit for selectively transmitting power to the one or more power receiving apparatus for every dividing period based on the allocation result in the allocating unit.
Owner:SONY CORP

Wireless power infrastructure

A wireless power infrastructure for delivering wireless power from a wireless network to mobile devices. The infrastructure includes a plurality of power transmission hubs, each hub having: a first capacitor for transmitting a signature frequency for a defined range; and a set of second capacitors, each for transmitting resonant wireless power within the defined range at a selectable frequency. A mobile device for obtaining wireless resonant the plurality of power transmission hubs is also described, and includes: a first variable capacitor for detecting a signature frequency associated with a proximately located power transmission hub; a second variable capacitor for receiving wireless resonant capacitor from the proximately located power transmission hub; and a synchronization system for setting the second variable capacitor to a frequency that is synchronized with a wireless resonant power transmission of the proximately located power transmission hub.
Owner:IBM CORP

Power supply system

A power supply system according to the present invention comprises: a primary side coil; a power transmission apparatus having a primary side circuit for feeding a pulse voltage resulted from switching a DC voltage which is obtained by rectifying and smoothing a commercial power supply to the primary side coil; a secondary side coil magnetically coupled to the primary side coil; and power reception equipment having a secondary side circuit for rectifying and smoothing voltage induced across the secondary side coil, wherein there is provided a power adjusting section for adjusting a level of power to be transmitted according to power required by the power reception equipment. The power adjusting section has, in the primary side circuit, a carrier wave oscillation circuit for supplying a carrier wave to the primary side coil, a demodulation circuit for demodulating a modulated signal transmitted from the secondary circuit and received by the primary side coil, and a power change-over section for selecting a level of power to be transmitted according to an information signal from the power reception equipment and demodulated by the demodulation circuit. The power adjusting section has, in the secondary side circuit, a modulation circuit for modulating the carrier wave fed from the carrier wave oscillation circuit and received by the secondary side coil with the information signal from the power reception equipment and transmitting the modulated signal.
Owner:SHARP KK

Power semiconductor devices and methods of manufacture

Various embodiments for improved power devices as well as their methods of manufacture, packaging and circuitry incorporating the same for use in a wide variety of power electronic applications are disclosed. One aspect of the invention combines a number of charge balancing techniques and other techniques for reducing parasitic capacitance to arrive at different embodiments for power devices with improved voltage performance, higher switching speed, and lower on-resistance. Another aspect of the invention provides improved termination structures for low, medium and high voltage devices. Improved methods of fabrication for power devices are provided according to other aspects of the invention. Improvements to specific processing steps, such as formation of trenches, formation of dielectric layers inside trenches, formation of mesa structures and processes for reducing substrate thickness, among others, are presented. According to another aspect of the invention, charge balanced power devices incorporate temperature and current sensing elements such as diodes on the same die. Other aspects of the invention improve equivalent series resistance (ESR) for power devices, incorporate additional circuitry on the same chip as the power device and provide improvements to the packaging of charge balanced power devices.
Owner:SEMICON COMPONENTS IND LLC

System and method for controlling power to resources based on historical utilization data

A method comprises collecting utilization data for a resource, and predicting by a power management system, based on the collected utilization data, future utilization of the resource. The method further comprises controlling, by the power management system, power to the resource, based at least in part on the predicted future utilization of the resource. In one embodiment, the utilization data is collected for a plurality of resources that are operable to perform tasks, and the method further comprises determining, by the power management system, how many of the resources are needed to provide a desired capacity for servicing the predicted future utilization of the resources for performing the tasks. The method further comprises configuring, by the power management system, ones of the resources exceeding the determined number of resources needed to provide the desired capacity in a reduced power-consumption mode.
Owner:MOSAID TECH

Method and apparatus for optimizing performance and battery life of electronic devices based on system and application parameters

An electronic device (e.g., computer system, etc.) employing dynamic power management of the present invention adjusts power consumption in accordance with an analysis of parameters and events occurring over one or more time-periods. Preferably, the electronic device monitors microprocessor, operating system, peripheral and / or device-level events and adjusts run-time parameters, such as microprocessor clock frequency and voltage, to reduce power consumption with minimal perceived degradation in performance.
Owner:MOSAID TECH

Performance monitoring based dynamic voltage and frequency scaling

Voltage and frequency scaling techniques that are based upon monitored data are provided. The techniques may be used to better manage the power and energy consumption of a processor in an embedded system, such as a cellular telephone, personal data assistant, smart device, or the like. The techniques may be used with processors that offer a performance monitoring capability. The performance monitor may monitor thread-level utilization at runtime. Instructions per cycle and memory references per cycle are example metrics that may be monitored by the performance monitor. The voltage and frequency scaling techniques may adjust the operating voltage and operating frequency of the processor based on the values of these two metrics. For example, the techniques may include accessing a voltage and frequency scheduler lookup table. The techniques may be employed with non-embedded systems, as well, embedded systems.
Owner:TAHOE RES LTD

Selective data encryption using style sheet processing

A method, system, and computer program product for selectively encrypting one or more elements of a document using style sheet processing. Disclosed is a policy-driven augmented style sheet processor (e.g. an Extensible Stylesheet Language, or “XSL”, processor) that creates a selectively-encrypted document (e.g. an Extensible Markup Language, or “XML”, document) carrying key-distribution material, such that by using an augmented document processor (e.g. an augmented XML processing engine), an agent can recover only the information elements for which it is authorized. The Document Type Definition (DTD) or schema associated with a document is modified, such that the DTD or schema specifies a reference to stored security policy to be applied to document elements. Each document element may specify a different security policy, such that the different elements of a single document can be encrypted differently (and, some elements may remain unencrypted). The key distribution material enables a document to be encrypted for decryption by an audience that is unknown at the time of document creation, and enables access to the distinct elements of a single encrypted document to be controlled for multiple users and / or groups of users. In this manner, group collaboration is improved by giving more people easier access to information for which they are authorized, while protecting sensitive data from unauthorized agents. A key recovery technique is also defined, whereby the entire document can be decrypted by an authorized agent regardless of how the different elements were originally encrypted and the access protections which were applied to those elements.
Owner:IBM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products