Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

6796 results about "Angular velocity" patented technology

In physics, angular velocity refers to how fast an object rotates or revolves relative to another point, i.e. how fast the angular position or orientation of an object changes with time. There are two types of angular velocity: orbital angular velocity and spin angular velocity. Spin angular velocity refers to how fast a rigid body rotates with respect to its centre of rotation. Orbital angular velocity refers to how fast a point object revolves about a fixed origin, i.e. the time rate of change of its angular position relative to the origin.

Portable system for analyzing human gait

The invention is a portable gait analyzer comprising of at least one independent rear foot motion collection unit, at least one independent lower shank motion collection unit, plantar pressure collection unit, at least one processing and display unit, and a soft casing unit. A plurality of accelerometers, rate sensors, force sensor resistors, and pressure sensors provide for the acquisition of acceleration signals, angular velocity signals, foot force signals, and foot pressure signals to be processed. At least one central processing unit, a plurality of memory components, input/output components and ports, telemetry components, calibration components, liquid crystal displays components for the processing and outputting of three dimensional acceleration, angular velocity, tilt, and position. The rearfoot motion collection unit and lower shank motion collection unit interact with the processing and display unit to calculate rear foot kinematic data crucial to identify the motions of pronation and supination. The plantar pressure collection unit interacts with the processing and display unit to calculate plantar pressure data crucial to identify the center of pressure line and excessive and abnormal loads on the sole of the foot. These factors of rear-foot kinematics and plantar pressure lead to gait style identification.
Owner:ADVANCED MOTION TECH INC

Method and apparatus for determining orientation and position of a moveable object

An orientation and position tracking system in three-dimensional space and over a period of time utilizing multiple inertial and other sensors for determining motion parameters to measure orientation and position of a moveable object. The sensors, for example vibrational and angular velocity sensors, generate signals characterizing the motion of the moveable object. The information is received by a data acquisition system and processed by a microcontroller. The data is then transmitted via wireless communication to an external data reception system (locally based or a global network). The information can then be displayed and presented to the user through a variety of means including audio, visual, and tactile.
Owner:FORTESCUE CORP

Head-mounted display apparatus

A head-mounted display apparatus comprises a see-through image display portion for setting a display frame in a display-capable range, and displaying an image in such a manner that the image is superimposed on an image of the external environment in the display frame, an angular velocity sensor for detecting the tilting angle of the head of an observer; an LCD driver, a second CPU and the like which control the display frame to move in an amount corresponding to the angle detected by the angle detection means in the direction opposite to the tilting direction of the observer's head, whereby the position of a virtual image, observed by the observer, is kept substantially constant, irrespective of the tilting of the observer's head, and first CPU which controls the apparatus so that the mode of the apparatus is automatically changed to a low consumption power mode.
Owner:OLYMPUS CORP

Method and apparatus for controlling brushless DC motors in implantable medical devices

Methods and apparatus for controlling a polyphase motor in implantable medical device applications are provided. In one embodiment, the polyphase motor is a brushless DC motor. The back emf of a selected phase of the motor is sampled while a drive voltage of the selected phase is substantially zero. Various embodiments utilize sinusoidal or trapezoidal drive voltages. The sampled back emf provides an error signal indicative of the positional error of the rotor. In one embodiment, the sampled back emf is normalized with respect to a commanded angular velocity of the rotor to provide an error signal proportional only to the positional error of the motor rotor. The error signal is provided as feedback to control a frequency of the drive voltage. A speed control generates a speed control signal corresponding to a difference between a commanded angular velocity and an angular velocity inferred from the frequency of the drive voltage. The speed control signal is provided as feedback to control an amplitude of the drive voltage. In one embodiment, an apparatus includes a brushless DC motor and a commutation control. The commutation control provides a commutation control signal for a selected phase of the motor in accordance with a sampled back electromotive force (emf) of that phase. The back emf of the phase is sampled only while the corresponding drive voltage for the selected phase is substantially zero, wherein a frequency of a drive voltage of the motor is varied in accordance with the commutation control signal.
Owner:HEARTWARE INC

Apparatus for correction based upon detecting a camera shaking

An apparatus for detecting a deviation of a camera as a result of the camera shaking, for example resulting from a hand of the camera operator shaking. The apparatus includes a shaking detector which detects a deviation of the camera from shaking based upon an output of angular velocity sensors which are located on different axes of the camera coordinates. A calculator calculates tilt angles of each of the coordinate axes from outputs of the angular velocity sensors. The rotation regulator rotates an image pickup device around an optical axis of the camera or an axis in parallel with the optical axis.
Owner:RICOH KK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products