Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

7298results about "Acceleration measurement using interia forces" patented technology

Motion analysis system

InactiveUS6301964B1Accurately determine velocity and distance traveledAcceleration measurement using interia forcesGymnastic exercisingAccelerometerTarget Motion Analysis
A device comprised of at least a pair of accelerometers and a tilt sensor mounted in fixed relation to a datum plane defining surface (sole of a shoe) may be used for extracting kinematic variables including linear and rotational acceleration, velocity and position. These variables may be resolved into a selected direction thereby permitting both relative and absolute kinematic quantities to be determined. The acceleration is determined using a small cluster of two mutually perpendicular accelerometers mounted on a shoe. Angular orientation of the foot may be determined by double integration of the foot's angular acceleration (which requires a third accelerometer substantially parallel to one of the two orthogonal accelerometers). The two orthogonal accelerations are then resolved into a net horizontal acceleration or other selected direction which may be integrated to find the foot velocity in the selected direction. The average of the foot velocity corresponds to the subject's gait speed.
Owner:GARMIN

Method of fabrication of a microstructure having an internal cavity

A method of fabricating a microstructure having an inside cavity. The method includes depositing a first layer or a first stack of layers in a substantially closed geometric configuration on a first substrate. Then, performing an indent on the first layer or on the top layer of said first stack of layers. Then, depositing a second layer or a second stack of layers substantially with said substantially closed geometric configuration on a second substrate. Then, aligning and bonding said first substrate on said second substrate such that a microstructure having a cavity is formed according to said closed geometry configuration.
Owner:CP CLARE +1

Manufacture of MEMS structures in sealed cavity using dry-release MEMS device encapsulation

The disclosed fabrication methodology addresses the problem of creating low-cost micro-electro-mechanical devices and systems, and, in particular, addresses the problem of delicate microstructures being damaged by the surface tension created as a wet etchant evaporates. This disclosure demonstrates a method for employing a dry plasma etch process to release encapsulated microelectromechanical components.
Owner:CYMATICS LAB CORP

Electronic component having micro-electrical mechanical system

An electronic component includes a semiconductor substrate having a first surface and a second surface opposite to the first surface, a cavity that penetrates from the first surface to the second surface of the semiconductor substrate, and an electrical mechanical element that has a movable portion formed above the first surface of the semiconductor substrate so that the movable portion is arranged above the cavity. The electronic component further includes an electric conduction plug, which penetrates from the first surface to the second surface of the semiconductor substrate, and which is electrically connected to the electrical mechanical element.
Owner:KIOXIA CORP

Method of Fabricating High Aspect Ratio Transducer Using Metal Compression Bonding

A method and apparatus are described for fabricating a high aspect ratio MEMS device by using metal thermocompression bonding to assemble a reference wafer (100), a bulk MEMS active wafer (200), and a cap wafer (300) to provide a proof mass (200d) formed from the active wafer with bottom and top capacitive sensing electrodes (115, 315) which are hermetically sealed from the ambient environment by sealing ring structures (112 / 202 / 200a / 212 / 312 and 116 / 206 / 200e / 216 / 316).
Owner:FREESCALE SEMICON INC

Method of fabrication of ai/ge bonding in a wafer packaging environment and a product produced therefrom

A method of bonding of germanium to aluminum between two substrates to create a robust electrical and mechanical contact is disclosed. An aluminum-germanium bond has the following unique combination of attributes: (1) it can form a hermetic seal; (2) it can be used to create an electrically conductive path between two substrates; (3) it can be patterned so that this conduction path is localized; (4) the bond can be made with the aluminum that is available as standard foundry CMOS process. This has the significant advantage of allowing for wafer-level bonding or packaging without the addition of any additional process layers to the CMOS wafer.
Owner:INVENSENSE

Movement measuring device, electronic game machine including movement measuring device, and method of playing game machine

A movement measuring device determines the speed of the body's specific movement on the basis of the maximum value of the acceleration sensed by an acceleration sensing unit attached to the body, when the body has made a specific movement. For example, when the player wears the device on his arm and makes a punching motion, the punching speed is found from the maximum acceleration resulting from the punching action. Furthermore, a game device obtains data indicating the magnitude of a specific movement of the body, on the basis of the acceleration sensed by an acceleration sensing unit, and then decides the outcome of the game on the basis of the strength and weakness of the punch. This enables the user to easily play a fighting sport game involving the player's actual punching motions anywhere.
Owner:CASIO COMPUTER CO LTD

Selective etching of silicon carbide films

A method of etching silicon carbide using a nonmetallic mask layer. The method includes providing a silicon carbide substrate; forming a non-metallic mask layer by applying a layer of material on the substrate; patterning the mask layer to expose underlying areas of the substrate; and etching the underlying areas of the substrate with a plasma at a first rate, while etching the mask layer at a rate lower than the first rate.
Owner:RGT UNIV OF CALIFORNIA

Sigma-delta modulator for operating sensors

A sigma-delta modulator can be used for actuating a sensor element. The sigma delta modulator includes: a forward branch to which an input signal is fed at an input and which includes a loop filter, a quantizer and an output for providing an output signal. A feedback branch is configured to feed back the output signal of the forward branch at least temporarily to the input of the forward branch. A signal source is configured to generate a readout signal which corresponds to the voltage profile at the sensor element during a measuring process. A control unit is configured to generate a control signal dependent on which either the output signal of the forward branch or the readout signal of the signal source is fed back to the input of the forward branch.
Owner:INFINEON TECH AG

Integrated Motion Processing Unit (MPU) With MEMS Inertial Sensing And Embedded Digital Electronics

A module operable to be mounted onto a surface of a board. The module includes a linear accelerometer to provide a first measurement output corresponding to a measurement of linear acceleration in at least one axis, and a first rotation sensor operable to provide a second measurement output corresponding to a measurement of rotation about at least one axis. The accelerometer and the first rotation sensor are formed on a first substrate. The module further includes an application specific integrated circuit (ASIC) to receive both the first measurement output from the linear accelerometer and the second measurement output from the first rotation sensor. The ASIC includes an analog-to-digital converter and is implemented on a second substrate. The first substrate is vertically bonded to the second substrate.
Owner:INVENSENSE

Acoustic wave touch detecting apparatus

InactiveUS6948371B2Superior in anti-Electromagnetic Interference (EMI) propertiesLow costInput/output for user-computer interactionAcceleration measurement using interia forcesEngineeringAcoustic wave
An FPC is constructed of two FPC branches, and a connection line that connects to a controller. Printed wiring of the connection line includes ten printed wires. The central four printed wires are signal reception wires, which are connected to two converters (sensors). Grounding wires are provided on both sides of the four signal reception wires. Two outer signal wires are provided adjacent to the grounding wires, respectively toward the outsides thereof. Further, two more grounding wires are provided adjacent to the outer signal wires, respectively on the outsides thereof. This construction results in shielding of all of the signal wires. This relationship is maintained in the FPC branches as well.
Owner:ELO TOUCH SOLUTIONS INC

Force estimation for a minimally invasive robotic surgery system

A method of force estimation for a minimally invasive medical system comprising a robot manipulator (10). The manipulator has an effector unit (12) equipped with a 6-degrees-of-freedom (DOF) force / torque sensor and is configured to hold a minimally invasive instrument (14) having a first end (16) mounted to the effector unit and a second end (20) located beyond an external fulcrum (23) that limits the instrument in motion, usually to 4 DOF. The method comprising the steps: —determining a position of the instrument relative to the fulcrum; —measuring by means of the 6-DOF force / torque sensor a force and a torque exerted onto the effector unit by the first end of the instrument; and —calculating by means of the principle of superposition an estimate of a force exerted onto the second end of the instrument based on the determined position, the measured force and the measured torque.
Owner:EURATOM

Method and apparatus for determining the attachment position of a motion sensing apparatus

A motion sensing apparatus generally comprising a housing unit operable to be attached to an object at an attachment position, an accelerometer operable to provide a signal corresponding to an acceleration measurement; and a processing system. The processing system is operable to acquire the signal corresponding to the acceleration measurement and analyze the acquired acceleration measurement to identify the attachment position of the housing unit.
Owner:GARMIN

Method of fabricating microelectromechanical systems and devices having trench isolated contacts

There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a MEMS device, and technique of fabricating or manufacturing a MEMS device, having mechanical structures encapsulated in a chamber prior to final packaging and a contact area disposed at least partially outside the chamber. The contact area is electrically isolated from nearby electrically conducting regions by way of dielectric isolation trench that is disposed around the contact area. The material that encapsulates the mechanical structures, when deposited, includes one or more of the following attributes: low tensile stress, good step coverage, maintains its integrity when subjected to subsequent processing, does not significantly and / or adversely impact the performance characteristics of the mechanical structures in the chamber (if coated with the material during deposition), and / or facilitates integration with high-performance integrated circuits. In one embodiment, the material that encapsulates the mechanical structures is, for example, silicon (polycrystalline, amorphous or porous, whether doped or undoped), silicon carbide, silicon-germanium, germanium, or gallium-arsenide.
Owner:ROBERT BOSCH GMBH

Six degree-of-freedom micro-machined multi-sensor

A six degree-of-freedom micro-machined multi-sensor that provides 3-axes of acceleration sensing, and 3-axes of angular rate sensing, in a single multi-sensor device. The six degree-of-freedom multi-sensor device includes a first multi-sensor substructure providing 2-axes of acceleration sensing and 1-axis of angular rate sensing, and a second multi-sensor substructure providing a third axis of acceleration sensing, and second and third axes of angular rate sensing. The first and second multi-sensor substructures are implemented on respective substrates within the six degree-of-freedom multi-sensor device.
Owner:ANALOG DEVICES INC

Micromachined inertial sensor devices

A micromachined inertial sensor with a single proof-mass for measuring 6-degree-of-motions. The single proof-mass includes a frame, an x-axis proof mass section attached to the frame by a first flexure, and a y-axis proof mass section attached to the frame by a second flexure. The single proof-mass is formed in a micromachined structural layer and is adapted to measure angular rates about three axes with a single drive motion and linear accelerations about the three axes.
Owner:SEMICON COMPONENTS IND LLC

Single proof mass, 3 axis MEMS transducer

A transducer is provided herein which comprises an unbalanced proof mass (51), and which is adapted to sense acceleration in at least two mutually orthogonal directions. The proof mass (51) has first (65) and second (67) opposing sides that are of unequal mass.
Owner:NORTH STAR INNOVATIONS

Magnetic field sensor

A magnetic field sensor for measuring at least two components of a magnetic field comprises a ferromagnetic core mounted on a semiconductor chip, an exciter coil to which a current can be applied and two read-out sensors. The ferromagnetic core is ring-shaped. The exciter coil is preferably formed from conductor tracks of the semiconductor chip and from bonding wires.
Owner:MELEXIS TECH NV

Device for measuring the motion of a conducting body through magnetic induction

A device for measuring a motion of a moving electrically conducting body is disclosed. A magnetic field generated by, for example, electromagnets or permanent magnets, penetrates at least a partial area of the moving body. Two or more measuring devices are arranged outside the magnetic field to measure a measurement magnetic field that is induced by electrical currents in the moving body. The measuring devices are arranged essentially symmetrically with respect to the magnetic field generating means or the moving body. The measurement magnetic field represents at least one motion variable of the moving body. The measuring device is thereby no longer subjected to the temperature-dependent variations of the exciting field.
Owner:SIEMENS AG

Body Mounted Monitoring System And Method

Apparatus, systems, and methods for monitoring head acceleration and / or forces acting thereon are disclosed. A device for monitoring an acceleration or a force acting on the head of a user includes a flexible article adapted to be worn on the head of the user; and a monitoring assembly coupled to the flexible article. The monitoring assembly includes a sensor for measuring a force on the head and transmitting data relating to the force, the sensor disposed proximate to the head, a processor adapted to receive the force data from the sensor, and a flexible strip operatively connecting the sensor and the processor.
Owner:MEDIDATA SOLUTIONS +1

Microelectromechanical sensor with improved mechanical decoupling of sensing and driving modes

A driving mass of an integrated microelectromechanical structure is moved with a rotary motion about an axis of rotation, and a sensing mass is connected to the driving mass via elastic supporting elements so as to perform a detection movement in the presence of an external stress. The driving mass is anchored to a first anchorage arranged along the axis of rotation by first elastic anchorage elements. The driving mass is also coupled to a pair of further anchorages positioned externally thereof and coupled to opposite sides with respect to the first anchorage by further elastic anchorage elements; the elastic supporting elements and the first and further elastic anchorage elements render the driving mass fixed to the first sensing mass in the rotary motion, and substantially decoupled from the sensing mass in the detection movement, the detection movement being a rotation about an axis lying in a plane.
Owner:STMICROELECTRONICS SRL

Method of fabricating micro electro mechanical system structure which can be vacuum-packed at wafer level

A method of fabricating a micro electromechanical system (MEMS) structure which can be vacuum-packaged at the wafer level is provided. The method includes the steps of forming a multilayered stack including a signal line on a first wafer; bonding a second wafer to the multilayered stack; polishing the first wafer to a predetermined thickness; forming a MEMS structure in a vacuum area of the first wafer and a pad outside the vacuum area, the MEMS structure and the pad being connected to the signal line; forming a structure in a third wafer to have space corresponding to the vacuum area of the MEMS structure; and bonding the third wafer to the polished surface of the first wafer in a vacuum state. For protection of the structure and maintaining a vacuum level required for operation, the fabricated structure is vacuum-packaged at the wafer level, thereby improving the yield of fabrication. In addition, since a special vacuum packaging process is not necessary, the fabrication can be simplified.
Owner:SAMSUNG ELECTRONICS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products