Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

5098results about "Acceleration measurement" patented technology

Portable system for analyzing human gait

The invention is a portable gait analyzer comprising of at least one independent rear foot motion collection unit, at least one independent lower shank motion collection unit, plantar pressure collection unit, at least one processing and display unit, and a soft casing unit. A plurality of accelerometers, rate sensors, force sensor resistors, and pressure sensors provide for the acquisition of acceleration signals, angular velocity signals, foot force signals, and foot pressure signals to be processed. At least one central processing unit, a plurality of memory components, input / output components and ports, telemetry components, calibration components, liquid crystal displays components for the processing and outputting of three dimensional acceleration, angular velocity, tilt, and position. The rearfoot motion collection unit and lower shank motion collection unit interact with the processing and display unit to calculate rear foot kinematic data crucial to identify the motions of pronation and supination. The plantar pressure collection unit interacts with the processing and display unit to calculate plantar pressure data crucial to identify the center of pressure line and excessive and abnormal loads on the sole of the foot. These factors of rear-foot kinematics and plantar pressure lead to gait style identification.
Owner:ADVANCED MOTION TECH INC

Method and apparatus for determining orientation and position of a moveable object

An orientation and position tracking system in three-dimensional space and over a period of time utilizing multiple inertial and other sensors for determining motion parameters to measure orientation and position of a moveable object. The sensors, for example vibrational and angular velocity sensors, generate signals characterizing the motion of the moveable object. The information is received by a data acquisition system and processed by a microcontroller. The data is then transmitted via wireless communication to an external data reception system (locally based or a global network). The information can then be displayed and presented to the user through a variety of means including audio, visual, and tactile.
Owner:FORTESCUE CORP

Instrumented insole

A combination of sensors, including solid-state gyros and force-sensitive resistors, are mounted in an insole suitable for insertion into a shoe. Data from the sensors is recorded by an in situ Programmable Interface Controller (PIC), logged into on-board EEPROM / Flash memory and relayed to a base station computer via a miniature telemetry transmitter triggered by RFID tagging. Software then uses this data to compute the cadence and ankle power of the subject, as well as other parameters, in order to analyze and assess the gait and activity of the subject.
Owner:CATHOLIC UNIV OF AMERICA

Electronic measurement of the motion of a moving body of sports equipment

An application of rate gyros and accelerometers allows electronic measurement of the motion of a rigid or semi-rigid body, such as a body associated with sporting equipment including a fly rod during casting, a baseball bat, a tennis racquet or a golf club during swinging. For instance, data can be collected by one gyro according to the present invention is extremely useful in analyzing the motion of a fly rod during fly casting instruction, and can also be used during the research, development and design phases of fly casting equipment including fly rods and fly lines. Similarly, data collected by three gyros and three accelerometers is extremely useful in analyzing the three dimensional motion of other sporting equipment such as baseball bats, tennis racquets and golf clubs. This data can be used to support instruction as well as design of the sporting equipment.
Owner:RGT UNIV OF MICHIGAN

Sport performance systems for measuring athletic performance, and associated methods

System determines impact of a helmet, comprising: accelerometer and processor, the accelerometer detecting acceleration of the helmet, the processor configured to process the signals from the accelerometer to determine impact of the helmet. System determines athletic performance, comprising: pressure sensor for sensing change in elevation; microprocessor for processing signals from the pressure sensor to determine vertical speed corresponding to the change in elevation; and display for reporting the vertical speed to a user. System assesses athletic performance, comprising: protective housing configured for attachment to a human-powered sport vehicle; GPS sensor configured with the housing for generating earth position signals; microprocessor configured with the housing for processing the signals to determine speed and distance traveled of the sport vehicle; and display configured with the housing for displaying one or both of the speed and distance traveled to a user of the human-powered sport vehicle.
Owner:NIKE INC

Product integrity systems and associated methods

System determines integrity of a product through shipment and has: (a) plurality of identical smart sensors for direct attachment to different locations on the product and (b) interrogating device, the identical smart sensors monitoring like environmental condition of the product during shipment and wirelessly communicating data about the environmental condition to the interrogating device during or after shipment, the interrogating device communicating the environmental condition over a network, wherein the identical smart sensors comprise an accelerometer and the environmental condition comprises acceleration. Method establishes product integrity after shipment from first location to second location by: attaching plurality of identical smart sensors directly to product at first location; monitoring environmental condition of product via the identical smart sensors during shipment; wirelessly communicating the environmental condition from the identical smart sensors to receiver at the second location; and communicating the environmental condition from the receiver to a third location.
Owner:TVIPR

Accelerometer for data collection and communication

A method for communicating data is provided that includes collecting data associated with an individual using an accelerometer. The accelerometer is operable to monitor activity associated with the individual. The method also includes communicating the data to a computing device, which can receive the data and perform any number of operations.
Owner:KERSH RISK MANAGEMENT

Power management of a system for measuring the acceleration of a body part

The present invention provides an apparatus and method for determining the magnitude of linear and rotational acceleration of an impact to a body part. The apparatus can be used with protective sports equipment, such as a sports helmet, wherein the apparatus includes a battery, a number of accelerometers positioned proximate to the outer surface of the head, and an electronic device with a processor and a transmitter to transmit data received from the accelerometers. To maximize the battery life and minimize power consumption by the electronic device, the apparatus includes a power management system with a sensor assembly. The sensor assembly sends a first signal to the electronic device to initiate operation when the sensor assembly detects the presence of an object within the helmet, and a second signal to the electronic device to cease operation when the sensor assembly detects the absence of the object. The sensor assembly may be a proximity sensor, more specifically an inductive, capacitive, or ultrasonic sensor.
Owner:RIDDELL

Method, apparatus and system for recognizing actions

An object of the present invention is to provide a method, an apparatus and a system for automatically recognizing motions and actions of moving objects such as humans, animals and machines.Measuring instruments are attached to an object under observation. The instruments measure a status change entailing the object's motion or action and to issue a signal denoting the measurements. A characteristic quantity extraction unit extracts a characteristic quantity from the measurement signal received which represents the motion or action currently performed by the object under observation. A signal processing unit for motion / action recognition correlates the extracted characteristic quantity with reference data in a database containing previously acquired characteristic quantities of motions and actions. The motion or action represented by the characteristic quantity with the highest degree of correlation is recognized and output.
Owner:APPLE INC

Method and apparatus for estimating a motion parameter

A method and apparatus for estimating a motion parameter corresponding to a subject element employs one or more accelerometers operable to measure accelerations and a processing system operable to generate a motion parameter metric utilizing the acceleration measurements and estimate the motion parameter using the motion parameter metric.
Owner:GARMIN

Motion sensor data processing using various power management modes

Systems and methods for processing motion sensor data using various power management modes of an electronic device are provided. Power may be provided to a motion sensor during a first power mode of the device. In response to the motion sensor detecting a motion event with a magnitude exceeding a threshold, the sensor may transmit a wake up signal to a power management unit of the device. In response to receiving the wake up signal, the power management unit may switch the device to a second power mode. The device may provide power to a processor and load the processor with a motion sensing application when switching to the second power mode. During the second power mode, motion sensor data may be processed to determine that the motion event is not associated with an intentional user input and the device may return to the first power mode.
Owner:APPLE INC

Transitioning Between Modes of Input

Transitioning between a high-resolution input mode, such as a mouse-based interface, and a low-resolution input mode, such as a touch-based interface, is described. A change of orientation of a touch screen between a first orientation and a second orientation is detected. Transitioning between the two input modes and corresponding user interfaces (UIs) is based on the detected change of orientation. A change of orientation can be detected with one or more sensors, such as an accelerometer, position sensors, etc. Transitioning from one mode to another can include modifying an item displayed in the UI of the one mode into a corresponding item displayed in the UI of the other mode. The modifying can include enlarging / reducing, obscuring / unobscuring, moving, etc. For example, an item can be obscured by the visual effect of sliding it off of the screen.
Owner:APPLE INC

System, method and device for monitoring an athlete

The invention provides a system, method and device which allows for real time monitoring of an athlete's performance during an athletic event, such as a boxing match or kick-boxing match, to provide a greater quantity of information to a viewer of the event. The system (9) includes a plurality of monitoring articles (10) attached to each fighter (202 and 204) and a computing device (50) positioned outside of the fighting environment (200). Each of the plurality of monitoring articles (10) preferably includes a motion sensing device (34), a microprocessor (18) and a wireless transceiver (38). The monitoring article (10) creates a real-time impact force signal for each punch or kick, which is wirelessly transmitted outside of the fighting environment (200) to a computing device (50) for processing into an impact value for transmission to and image on an electro-optical display (250).
Owner:IMPACT SPORTS TECH

Robust step detection using low cost MEMS accelerometer in mobile applications, and processing methods, apparatus and systems

A system (10) for pedestrian use includes an accelerometer (110) having multiple electronic sensors; an electronic circuit (100) operable to generate a signal stream representing magnitude of overall acceleration sensed by the accelerometer (110), and to electronically correlate a sliding window (520) of the signal stream with itself to produce peaks at least some of which represent walking steps, and further operable to electronically execute a periodicity check (540) to compare different step periods for similarity, and if sufficiently similar then to update (560) a portion of the circuit substantially representing a walking-step count; and an electronic display (190) responsive to the electronic circuit (100) to display information at least in part based on the step count. Other systems, electronic circuits and processes are disclosed.
Owner:TEXAS INSTR INC

Swiped aperture capacitive fingerprint sensing systems and methods

A fingerprint sensing system includes an image sensor, a rate sensor and a sensor circuit. The image sensor includes a linear array of capacitive sensors for capacitive sensing of ridge peaks and ridge valleys of a fingerprint on a swiped finger. The rate sensor senses the speed of the finger as it is swiped across the image sensor. The sensor circuit supplies image drive signals to the image sensor and detects image signals in response to the drive signals. The sensor circuit supplies rate drive signals to the rate sensor and detects rate signals in response to the rate drive signals. The sensor circuit further coordinates the image signals and the rate signals to provide a fingerprint image. The image sensor may be configured as an image pickup plate and multiple image drive plates formed on a substrate, such as a flexible printed circuit board or other flexible substrate which may conform to the shape of the finger.
Owner:SYNAPTICS INC

Method and apparatus for operating an input device

Disclosed herein is an improved input device for a processing system, such as, for example a computer system; and an improved method for operating that input device. The system monitors at least one indicia, such as an operating parameter of the input device, where the operating parameter has a first characteristic when the input device is in one operating position or state, but where are the operating parameter has a second characteristic when the input device is in another position or state. In one example, the operating parameter includes generally vertical movement of the input device. In other embodiments, other operating parameters may be relied upon.
Owner:APPLE INC

Sport monitoring systems and associated methods

Methods and systems are disclosed for determining speed, power and / or impact (sporting characteristics) of persons involved in activity. Wireless signals may be generated indicative of the sporting characteristics for receipt and display on a watch worn by the user or on a remote display. Sensors may attach to the person or to a vehicle ridden by the person, to gauge activities such as jogging, hockey, biking, football and aerobics.
Owner:APPLE INC

Processing method for motion measurement

A processing method for motion measurement, which is adapted to apply to output signals proportional to rotation and translational motion of a carrier, respectively from rate sensors and acceleration sensors, is more suitable for emerging MEMS rate and acceleration sensors. Compared with a conventional IMU, the processing method utilizes a feedforward open-loop signal processing scheme to obtain highly accurate motion measurements by means of signal digitizing, temperature control and compensation, sensor error and misalignment calibrations, attitude updating, and damping control loops, and dramatically shrinks the size of mechanical and electronic hardware and power consumption, meanwhile, obtains highly accurate motion measurements.
Owner:AMERICAN GNC

Product integrity systems and associated methods

The invention provides a smart sensor in the form of an adhesive bandage. The sensor may be used in many applications such as within sports, the shipping industry and medical and health industries. The sensor sticks to people and objects and wirelessly communicates with remote receivers. Internal detectors sense conditions associated with movement and / or the environment of the sensor. In one example, an accelerometer detects impact and drop distance of a package in transit; the sensor is either within a label or attached to a product within the package. The sensor may also prevent theft and assist in tracking package disposition so as to reduce lost packages. The sensors of the invention may also be used in fitness and health, such as to monitor body functions of heart rate and respiration; these sensors also may initiate immediate wireless warnings for improper functions so that persons may obtain immediate assistance. Sensors of the invention are also useful for sports media broadcasts; multiple sensors may attach to athletes so that wireless performance data is made available, in near real time, to audiences and media observers. Data from sensors of the invention may also change the computer gaming community; that is, certain sensors tracking real performance data may relay information used within gaming so as to govern computer gaming motions. Typically, sensors of the invention communicate by an RF transmitter or transceiver. Groups of sensors may be combined within a common canister that imparts date and time information and “power on” when dispensed.
Owner:TVIPR

Energy expenditure

Aspects relate to calculating energy expenditure values from an apparatus configured to be worn on an appendage of a user. Steps counts may be quantified, such as by detecting arm swings peaks and bounce peaks in motion data. A search range of acceleration frequencies related to an expected activity may be established. Frequencies of acceleration data within a search range may be analyzed to identify one or more peaks, such as a bounce peak and an arm swing peak. Novel systems and methods may determine whether to utilize the arm swing data, bounce data, and / or other data or portions of data to quantify steps. The number of peaks (and types of peaks) may be used to choose a step frequency and step magnitude. At least a portion of the motion data may be classified into an activity category based upon the quantification of steps.
Owner:NIKE INC

Diagnostic method for a torque control of an electrically variable transmission

ActiveUS20050252283A1Impaired speed controlImpaired torque controlVehicle testingRegistering/indicating working of vehiclesLoop controlLow speed
A condition of impaired speed and torque control of a parallel electrically variable transmission due to factors beyond nominal modeling and estimation errors is diagnosed under low speed operation. The transmission includes at least one electric machine and a motor torque controller for regulating the transmission input speed and output torque. The motor torque controller includes an open-loop control path based on predetermined torques and accelerations and a closed loop control path based on input speed error. The presence of a larger than expected closed-loop correction magnitude, combined with low output speed and one or more other conditions is used to diagnose a condition of potential torque error, in which case the transmission control is altered to prevent unwanted operation.
Owner:GM GLOBAL TECH OPERATIONS LLC

Method and system for analysing tachometer and vibration data from an apparatus having one or more rotary components

A method of analysing tachometer and vibration response data from an apparatus having one or more rotary components is provided. The method comprises the steps of: providing vibration response data and corresponding tachometer data from the apparatus for a period over which a rotary component of the apparatus varies in rotational speed, the tachometer data being for that component; repeatedly performing at intervals throughout the period the sub-steps of: determining a forcing frequency of the component from the tachometer data and a corresponding vibration response frequency of the apparatus from the vibration response data, comparing the forcing and vibration response frequencies to determine the relative phase difference between the frequencies, and determining the corresponding amplitude of the vibration response from the vibration response data; and plotting the relative phase differences and vibration amplitudes on a polar diagram. The plot trajectory is characteristic of the behavior of the apparatus over the period.
Owner:ROLLS ROYCE PLC +1

Sensor package arrangement

A highly sensitive silicon micro-machined sensor package is provided for use in a micro-g environment that can also resist high shock in excess of 5000 g. The sensor is provided to measure acceleration in cooperation with associated electronics which are required to have electrical contact with sensor elements. The sensor is sealed in a high vacuum environment, and is arranged and designed to be free of temperature induced stress to the sensor. The sensor die package assembly comprises a silicon micro-machined sensor die, a ceramic package, two contact springs, a shorting clip, solder preform, a metal lid and a getter foil for ensuring a good vacuum for an extended period. The sensor die comprises a moving mass with eight supporting flexures on both sides of the proof mass. The proof mass's movement is protected on both sides by a top and a bottom cap. Acceleration applied to the package and the die causes the proof mass to move vertically in relation with the adjacent caps. The changes in distance between the proof mass and the caps in turn generate a change in an electrical signal which corresponds to the capacitance changes between the gaps. The sensor die package arrangement provides that the sensor die be secured within an evacuated ceramic case. Electrical connections made between external contacts of the case and contacts of the sensor die within the case are made through conductive springs, thereby minimizing materials in the interior of the case which would outgass in the vacuum environment.
Owner:I O SENSORS

System and method for monitoring a mobile computing product/arrangement

Described is a system and method for monitoring a mobile computing Arrangement. The arrangement may include a sensor and a processor. The sensor detects first data of an event including a directional orientation and a motion of the arrangement. The processor compares the first data to second data to determine if at least one predetermined procedure is to be executed. The second data may include a predetermined threshold range of changes in the directional orientation and the motion. If the predetermined procedure is to be executed, the processor selects the predetermined procedure which corresponds to the event as a function of the first data. Subsequently, the predetermined procedures is executed.
Owner:SYMBOL TECH INC

Device for monitoring and modifying eating behavior

A device for monitoring eating behavior of a user is provided. The device includes at least one sensor mounted on a head of the user, the sensor being capable of detecting jaw muscle movement and sound while not occluding an ear canal of the user.
Owner:IWHISPER

Method and system for analysing tachometer and vibration data from an apparatus having one or more rotary components

A method of analysing tachometer and vibration response data from an apparatus having one or more rotary components is provided. The method comprises the steps of: providing vibration response data and corresponding tachometer data from the apparatus for a period over which a rotary component of the apparatus varies in rotational speed, the tachometer data being for that component; repeatedly performing at intervals throughout the period the sub-steps of: determining a forcing frequency of the component from the tachometer data and a corresponding vibration response frequency of the apparatus from the vibration response data, comparing the forcing and vibration response frequencies to determine the relative phase difference between the frequencies, and determining the corresponding amplitude of the vibration response from the vibration response data; and plotting the relative phase differences and vibration amplitudes on a polar diagram. The plot trajectory is characteristic of the behaviour of the apparatus over the period.
Owner:ROLLS ROYCE PLC +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products